Skip to main content
Log in

Solidification of nitrogen-atomized Al86Ni6Y4.5Co2La1.5 metallic glass

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A comprehensive investigation has been made of the solidification of nitrogen-atomized Al86Ni6Y4.5Co2La1.5, using focused ion beam, transmission electron microscopy, and other analytical means. Face-centered cubic Al2Y was identified to be the leading crystalline phase rather than crystalline Al. A new orthorhombic-structured phase was identified in partially or fully crystallized powder particles. Apart from oxygen, nitrogen was also found to be associated with the leading crystalline phase Al2Y in which nitrogen exists as substitutional Nx. These findings facilitate the basis for understanding the unique aspects of the Al86Ni6Y4.5Co2La1.5 bulk metallic glass, including its powder preparation by gas atomization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.S. Chen and D. Turnbull: Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metall. 17, 1021 (1969).

    Article  CAS  Google Scholar 

  2. Z.P. Lu, C.T. Liu, J.R. Thompson, and W.D. Porter: Structural amorphous steel. Phys. Rev. Lett. 92, 245503 (2004).

    Article  CAS  Google Scholar 

  3. V. Ponnambalam, S.J. Poon, and G.J. Shiflet: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).

    Article  CAS  Google Scholar 

  4. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka: High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater. 49, 2645 (2001).

    Article  CAS  Google Scholar 

  5. W. Zhang, Q.S. Zhang, C.L. Qin, and A. Inoue: Formation and properties of new Cu-based bulk glassy alloys with critical diameters up to 1.5 cm. J. Mater. Res. 24, 2935 (2009).

    Article  CAS  Google Scholar 

  6. Y.C. Kim, W.T. Kim, and D.H. Kim: A development of Ti-based bulk metallic glass. Mater. Sci. Eng. A 375, 127 (2004).

    Article  CAS  Google Scholar 

  7. X.H. Lin and W.L. Johnson: Formation of Ti-Zr-Cu-Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).

    Article  CAS  Google Scholar 

  8. H. Men and D.H. Kim: Fabrication of ternary Mg-Cu-Gd bulk metallic glass with high glass-forming ability under air atmosphere. J. Mater. Res. 18, 1502 (2003).

    Article  CAS  Google Scholar 

  9. H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005).

    Article  CAS  Google Scholar 

  10. A. Peker and W.L. Johnson: A highly processable metallic-glass Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  11. M. Yan, J. Zou, and J. Shen: Effect of over-doped yttrium on the microstructure, mechanical properties and thermal properties of a Zr-based metallic glass. Acta Mater. 54, 3627 (2006).

    Article  CAS  Google Scholar 

  12. M. Yan, J. Shen, T. Zhang, and J. Zou: Enhanced glass-forming ability of a Zr-based bulk metallic glass with yttrium doping. J. Non-cryst. Solids. 352, 3109 (2006).

    Article  CAS  Google Scholar 

  13. D.B. Miracle, T. Egami, K.M. Flores, and K.F. Kelton: Structural aspects of metallic glasses. MRS Bull. 32, 629 (2007).

    Article  CAS  Google Scholar 

  14. A.L. Greer and E. Ma: Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 32, 611 (2007).

    Article  CAS  Google Scholar 

  15. B.J. Yang, J.H. Yao, J. Zhang, H.W. Yang, J.Q. Wang, and E. Ma: Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength. Scr. Mater. 61, 423 (2009).

    Article  CAS  Google Scholar 

  16. A. Inoue: Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).

    Article  CAS  Google Scholar 

  17. P. Dong, W.L. Hou, X.C. Chang, M.X. Quan, and J.Q. Wang: Amorphous and nanostructured Al(85)Ni(5)y(6)Co(2)Fe(2) powder prepared by nitrogen gas-atomization. J. Alloy. Comp. 436, 118 (2007).

    Article  CAS  Google Scholar 

  18. J.R. Hirth: Nucleation, undercooling and homogeneous structures in rapidly solidified powders. Metall. Trans. A 9A, 401 (1978).

    Article  CAS  Google Scholar 

  19. J.H. Perepezko and D.H. Rasmussen: Discussion of “Nucleation, undercooling and homogeneous structures in rapidly solidified powders”. Metall. Trans. A 9A, 1490 (1978).

    Article  CAS  Google Scholar 

  20. S.A. Miller and R.J. Murphy: A gas-water atomization process for producing amorphous powders. Scr. Metall. 13, 673 (1979).

    Article  CAS  Google Scholar 

  21. G.Q. Xie, W. Zhang, D.V. Louzguine-Luzgin, H. Kimura, and A. Inoue: Fabrication of porous Zr-Cu-Al-Ni bulk metallic glass by spark plasma sintering process. Scr. Mater. 55, 687 (2006).

    Article  CAS  Google Scholar 

  22. M. Yan, P. Yu, K.B. Kim, J.K. Lee, G.B. Schaffer, and Ma Qian: The surface structure of gas-atomized metallic glass powders. Scr. Mater. 62, 266 (2010).

    Article  CAS  Google Scholar 

  23. Q.J. Zhai, Y.L. Gao, W.B. Guan, and K.D. Xu: Role of size and cooling rate in quenched droplet of Sn-Bi eutectic alloy. Mater. Sci. Eng. A 441, 278 (2006).

    Article  CAS  Google Scholar 

  24. E.S. Lee and S. Ahn: Solidification progress and heat-transfer analysis of gas-atomized alloy droplets during spray forming. Acta Metall. Mater. 42, 3231 (1994).

    Article  CAS  Google Scholar 

  25. M. Yang, Y.X. Dai, C.J. Song, and Q.J. Zhai: Microstructure evolution of grey cast iron powder by high pressure gas atomization. J. Mater. Process. Tech. 210, 351 (2010).

    Article  CAS  Google Scholar 

  26. D.J. Wang: Thermal stability and sintering behavior of TiCuZrNiSn metallic glass. Ph.D. Thesis, Harbin Institute of Technology, China, 2010.

    Google Scholar 

  27. J.A. Gard: Interpretation of electron-diffraction patterns, in Electron Microscopy in Mineralogy, edited by H.R. Wenk, P.E. Champness, J.M. Cowley, A.H. Heuer, G. Thomas and N.J. Tighe (Springer-Verlag, Berlin, 1976), pp. 52–67.

    Chapter  Google Scholar 

  28. M. Yan, J. Zou, and J. Shen: New crystalline phases formed in a slowly-cooled Zr-based metallic glass. J. Alloy. Comp. 433, 120 (2007).

    Article  CAS  Google Scholar 

  29. T. Hahn (editor): International Tables for Crystallography (D. Reidel Publishing Company, Holland, 1983).

    Google Scholar 

  30. N.H. Pryds and A.S. Pedersen: Rapid solidification of martensitic stainless steel atomized droplets. Metall. Mater. Trans. A 33A, 3755 (2002).

    Article  CAS  Google Scholar 

  31. A. Inoue, T. Zhang, and T. Masumoto: Glass-forming ability of alloys. J. Non-Cryst. Solids. 156, 473 (1993).

    Article  Google Scholar 

  32. Y. Liu, Z.M. Liu, S. Guo, Y. Du, B.Y. Huang, J.S. Huang, S.Q. Chen, and F.X. Liu: Amorphous and nanocrystalline Al82Ni10Y8 alloy powder prepared by gas atomization. Intermetallics 13, 393 (2005).

    Article  CAS  Google Scholar 

  33. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, in Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain (Perkin-Elmer Corporation, Minnesota, 1992).

  34. R.G. Palgrave, D.J. Payne, and R.G. Egdell: Nitrogen diffusion in doped TiO2 (110) single crystals: A combined XPS and SIMS study. J. Mater. Chem. 19, 8418 (2009).

    Article  CAS  Google Scholar 

  35. A. Gebert, J. Eckert, and L. Schultz: Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu7.5Ni10 metallic glass. Acta Mater. 46, 5475 (1998).

    Article  CAS  Google Scholar 

  36. B.S. Murty, D.H. Ping, K. Hono, and A. Inoue: Influence of oxygen on the crystallization behavior of Zr65Cu27.5Al7.5 and Zr66.7Cu33.3 metallic glasses. Acta Mater. 48, 3985 (2000).

    Article  CAS  Google Scholar 

  37. J.H. Perepezko: Nucleation-controlled reactions and metastable structures. Prog. Mater. Sci. 49, 263 (2004).

    Article  CAS  Google Scholar 

  38. H.W. Yang, P. Dong, J.Q. Wang, and Y. Li: Glass formability and structural stability of Al-based alloy systems. Mater. Sci. Eng. A 449-451, 273 (2007).

    Article  CAS  Google Scholar 

  39. F. Audebert, C. Mendive, and A. Vidal: Structure and mechanical behavior of Al-Fe-X and Al-Ni-X rapidly solidified alloys. Mater. Sci. Eng. A 375, 1196 (2004).

    Article  CAS  Google Scholar 

  40. J.H. Perepezko, R.J. Hebert, and W.S. Tong: Amorphization and nanostructure synthesis in Al alloys. Intermetallics 10, 1079 (2002).

    Article  CAS  Google Scholar 

  41. J. Chen, Y. Zhang, J.P. He, K.F. Yao, B.C. Wei, and G.L. Chen: Metallographic analysis of Cu-Zr-Al bulk amorphous alloys with yttrium addition. Scr. Mater. 54, 1351 (2006).

    Article  CAS  Google Scholar 

  42. Y. Zhang, J. Chen, G.L. Chen, and X.J. Liu: Glass formation mechanism of minor yttrium addition in CuZrAl alloys. Appl. Phys. Lett. 89, 131904 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Australian Research Council (ARC) and the National Key Basic Research Program of China (Grant No. 2007CB613906). Dr. M. Yan acknowledges the support of an ARC Postdoctoral Fellowship. We also acknowledge the technical, scientific, and financial assistance from the AMMRF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, M., Wang, J.Q., Schaffer, G.B. et al. Solidification of nitrogen-atomized Al86Ni6Y4.5Co2La1.5 metallic glass. Journal of Materials Research 26, 944–950 (2011). https://doi.org/10.1557/jmr.2011.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.13

Navigation