Skip to main content
Log in

The mechanical properties of bamboo and vascular bundles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bamboo is a typical natural fiber-reinforced composite material with superior mechanical properties. As the reinforce phase in bamboo composite, the vascular bundles were extracted from different height locations of a Moso bamboo with an alkali treatment method, and the mechanical properties were investigated via the tensile test. It is found that both the longitudinal Young’s modulus and strength of the vascular bundles are linearly increased from the inner to outer side. To study the variation of mechanical properties of bamboo culm along the radial direction, thin bamboo slices were also tested. Using a modified rule of mixtures, the longitudinal Young’s modulus of bamboo slices are analyzed and excellent agreement can be found between experimental and theoretical results, which indicates that the longitudinal Young’s modulus of bamboo culm is cubically increased in the radial direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

TABLE I
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. H. Cheung, M. Ho, K. Lau, F. Cardona, and D. Hui: Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites. Part B 40, 655 (2009).

    Article  Google Scholar 

  2. D.N. Saheb and J.P. Jog: Natural fiber polymer composites: A review. Adv. Polym. Technol. 18, 351 (1999).

    Article  CAS  Google Scholar 

  3. R.F. Gibson: A review of recent research on mechanics of multifunctional-composite materials and structures. Compos. Struct. 92, 2793 (2010).

    Article  Google Scholar 

  4. G. Bogoeva-Gaceva, M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, and M. Errico: Natural fiber eco-composites. Polym. Compos. 28, 98 (2007).

    Article  CAS  Google Scholar 

  5. H. Kinoshita, K. Kaizu, M. Fukuda, H. Tokunaga, K. Koga, and K. Ikeda: Development of green composite consists of woodchips, bamboo fibers and biodegradable adhesive. Composites. Part B 40, 607 (2009).

    Article  Google Scholar 

  6. V.V. Vasiliev and E.V. Morozov: Mechanics and Analysis of Composite Materials, 1st ed. (Elsevier Science, New York, 2001), pp. 1, 30.

    Book  Google Scholar 

  7. F. Albermani, G.Y. Goh, and S.L. Chan: Lightweight bamboo double layer grid system. Eng. Struct. 29, 1499 (2007).

    Article  Google Scholar 

  8. A.K. Bledzki, O. Faruk, and V.E. Sperber: Cars from bio-fibres. Macromol. Mater. Eng. 291, 449 (2006).

    Article  CAS  Google Scholar 

  9. P. Wambua, J. Ivens, and I. Verpoest: Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63, 1259 (2003).

    Article  CAS  Google Scholar 

  10. A.K. Ray, S. Mondal, S.K. Das, and P. Ramachandrarao: Bamboo—A functionally graded composite-correlation between microstructure and mechanical strength. J. Mater. Sci. 40, 5249 (2005).

    Article  CAS  Google Scholar 

  11. W. Liese and G. Weiner: Ageing of bamboo culms. A review. Wood Sci. Technol. 30, 77 (1996).

    Article  CAS  Google Scholar 

  12. F. Nogata and H. Takahashi: Intelligent functionally graded material: Bamboo. Composites. Part B 5, 743 (1995).

    Google Scholar 

  13. S. Amada, Y. Ichikawa, T. Munekata, Y. Nagase, and H. Shimizu: Fiber texture and mechanical graded structure of bamboo. Composites. Part B 28, 13 (1997).

    Article  Google Scholar 

  14. S. Amada and S. Untao: Fracture properties of bamboo. Composites. Part B 32, 451 (2001).

    Article  Google Scholar 

  15. E.C.N. Silva, M.C. Walters, and G.H. Paulino: Modeling bamboo as a functionally graded material: Lessons for the analysis of affordable materials. J. Mater. Sci. 41, 6991 (2006).

    Article  CAS  Google Scholar 

  16. X. Chen, Q. Guo, and Y. Mi: Bamboo fiber-reinforced polypropylene composites: A study of the mechanical properties. J. Appl. Polym. Sci. 69, 1891 (1998).

    Article  CAS  Google Scholar 

  17. X. Li, T.F. Shupe, and C.Y. Hse: Physical and mechanical properties of medium density fibreboards from bamboo and tallow wood fibres. J. Bamboo Rattan 3, 383 (2004).

    Article  Google Scholar 

  18. E. Obataya, P. Kitin, and H. Yamauchi: Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber-foam composite structure. Wood Sci. Technol. 41, 385 (2007).

    Article  CAS  Google Scholar 

  19. K. Ogawa, T. Hirogaki, E. Aoyama, M. Taniguchi, and S. Ogawa: Sustainable manufacturing system focusing on the natural growth of bamboo. J. Adv. Mech. Des. Syst. Manuf. 4, 531 (2010).

    Article  Google Scholar 

  20. M. Ahmad and F.A. Kamke: Analysis of Calcutta bamboo for structural composite materials: Physical and mechanical properties. Wood Sci. Technol. 39, 448 (2005).

    Article  CAS  Google Scholar 

  21. I.M. Low, Z.Y. Che, and B.A. Latella: Mapping the structure, composition and mechanical properties of bamboo. J. Mater. Res. 21, 1969 (2006).

    Article  CAS  Google Scholar 

  22. H. Yu, B. Fei, H. Ren, Z. Jiang, and X. Liu: Variation in tensile properties and relationship between tensile properties and air-dried density for moso bamboo. Front. For. China 3, 127 (2008).

    Article  Google Scholar 

  23. Z-P. Shao, C-H. Fang, S-X. Huang, and G-L. Tian: Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure. Wood Sci. Technol. 44, 655 (2009).

    Article  Google Scholar 

  24. Y. Yu, Z. Jiang, and B. Fei: An improved microtensile technique for mechanical characterization of short plant fibers: A case study on bamboo fibers. J. Mater. Sci. 46, 739 (2011).

    Article  CAS  Google Scholar 

  25. K. Okubo, T. Fujii, and Y. Yamamoto: Development of bamboo-based polymer composites and their mechanical properties. Composites. Part A 35, 377 (2004).

    Article  Google Scholar 

  26. K.M.M. Rao and K.M. Rao: Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos. Struct. 77, 288 (2007).

    Article  Google Scholar 

  27. I. Burgert, J. Keckes, K. Frühmann, P. Fratzl, and S.E. Tschegg: A comparison of two techniques for wood fibre isolation-evaluation by tensile tests on single fibres with different microfibril angle. Plant Biol. 4, 9 (2002).

    Article  CAS  Google Scholar 

  28. A. Gomes, T. Matsuo, K. Goda, and J. Ohgi: Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Composites. Part A 38, 1811 (2007).

    Article  Google Scholar 

  29. L. Zou, H. Jin, W-Y. Lu, and X. Li: Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers. Mater. Sci. Eng., C 29, 1375 (2009).

    Article  CAS  Google Scholar 

  30. J. Summerscales, N.P.J. Dissanayake, A.S. Virk, and W. Hall: A review of bast fibres and their composites. Part 1-Fibres as reinforcements. Composites. Part A 41, 1329 (2010).

    Article  Google Scholar 

  31. E. Kanzawa, S. Aoyagi, and T. Nakano: Vascular bundle shape in cross-section and relaxation properties of Moso bamboo (Phyllostachys pubescens). Mater. Sci. Eng., C 31, 1050 (2011).

    Article  CAS  Google Scholar 

  32. J-L. Su and B-K. Zhou: Another calculation formula for longitudinal elastic modulus of unidirectional composite. J. Shenyang Inst. Aeronaut. Eng. 19, 7 (2002) (in Chinese).

    Google Scholar 

Download references

Acknowledgments

The supports from National Natural Science Foundation of China (NSFC) (Grant Nos. 11025209, 10972173, 11072184, and 11021202) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengping Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Shen, S. The mechanical properties of bamboo and vascular bundles. Journal of Materials Research 26, 2749–2756 (2011). https://doi.org/10.1557/jmr.2011.314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.314

Navigation