Skip to main content
Log in

Thick beryllium coatings by ion-assisted magnetron sputtering

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thick (>150 μm) beryllium coatings are studied as an ablator material of interest for fusion fuel capsules for the National Ignition Facility. DC magnetron sputtering is used because of the relative controllability of the processing temperature and energy of the deposits. However, coatings produced by DC magnetron sputtering leak the fuel gas D2. By using ion-assisted DC magnetron, sputtered coatings can be made that are leak-tight. Transmission electron microscopy (TEM) studies revealed microstructural changes that lead to leak-tight coating. Ultrasmall angle x-ray spectroscopy is used to characterize the void distribution and volume along the spherical surface along with a combination of focused ion beam, scanning electron microscope, and TEM. An in situ multibeam optical stress sensor was used to measure the stress behavior of thick beryllium coatings on flat substrates as the material was being deposited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. S.W. Haan, D.A. Callahan, M.J. Edwards, B.A. Hammel, D.D. Ho, O.S. Jones, J.D. Lindl, B.J. Macgowan, M.M. Marinak, D.H. Munro, S.M. Pollaine, J.D. Salmonson, B.K. Spears, and L.J. Suter: Rev3 update of requirements for NIF ignition targets. Fusion Sci. Technol. 55, 227 (2009).

    Article  CAS  Google Scholar 

  2. R. Mceachern, C. Alford, R. Cook, D. Makowcki, and R. Wallace: Sputter-deposited Be ablators for NIF target capsules. Fusion Technol. 31, 435 (1997).

    Article  CAS  Google Scholar 

  3. H.W. Xu, A. Nikroo, J.R. Wall, R. Doerner, M. Baldwin, and J.H. Yu: Be coating on spherical surface for NIF target development. Fusion Sci. Technol. 49, 778 (2006).

    Article  CAS  Google Scholar 

  4. H.W. Xu, C.S. Alford, J.C. Cooley, L.A. Dixon, R.E. Hackenberg, S.A. Letts, K.A. Moreno, A. Nikroo, J.R. Wall, and K.P. Youngblood: Beryllium capsule coating development for NIF targets. Fusion Sci. Technol. 51, 547 (2007).

    Article  CAS  Google Scholar 

  5. A. Nikroo, H.W. Xu, K.A. Moreno, K.P. Youngblood, J. Cooley, C.S. Alford, S.A. Letts, and R.C. Cook: Investigation of deuterium permeability of sputtered beryllium and graded copper-doped beryllium shells. Fusion Sci. Technol. 51, 553 (2007).

    Article  CAS  Google Scholar 

  6. K. Robbie and M.J. Brett: Sculptured thin films and glancing angle deposition: Growth mechanisms and applications. J. Vac. Sci. Technol. A 15(3), 1460 (1997).

    Article  CAS  Google Scholar 

  7. J. Dalla Torre, G.H. Gilmer, D.L. Windt, R. Kalyanaraman, F.H. Baumann, P.L. O’Sullivan, J. Sapjeta, T. Diaz de la Rubia, and M. Djafari Rouhani: Microstructure of thin tantalum films sputtered onto inclined substrates: Experiments and atomistic simulations. J. Appl. Phys. 94, 264 (2003).

    Article  Google Scholar 

  8. J.A. Thornton: High rate thick film growth. Annu. Rev. Mater. Sci. 7, 239 (1977).

    Article  CAS  Google Scholar 

  9. U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, and J.T. Gudmudsson: Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films 513, 1 (2006).

    Article  CAS  Google Scholar 

  10. K. Tao, D. Mao, and J. Hopwood: Ionized physical vapor deposition of titanium nitride: A global plasma model. J. Appl. Phys. 91, 4040 (2002).

    Article  CAS  Google Scholar 

  11. J. Hopwood: Ionized physical vapor deposition of integrated circuit interconnects. Phys. Plasmas 5, 1624 (1998).

    Article  CAS  Google Scholar 

  12. D.R. Juliano, D.N. Ruzic, M.M.C. Allain, and D.B. Hayden: Influences on ionization fraction in an inductively coupled ionized physical vapor deposition device plasma. J. Appl. Phys. 91, 605 (2002).

    Article  CAS  Google Scholar 

  13. V. Arunachalam, S. Rauf, D.G. Coronell, and P.L.G. Ventzek: Integrated multi-scale model for ionized plasma physical vapor deposition. J. Appl. Phys. 90, 64 (2001).

    Article  CAS  Google Scholar 

  14. E. Chason, B.W. Sheldon, L.B. Freund, J.A. Floro, and S.J. Hearne: Origin of compressive residual stress in polycrystalline thin films. Phys. Rev. Lett. 88, 156103 (2002).

    Article  CAS  Google Scholar 

  15. C. Friesen and C.V. Thompson: Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth. Phys. Rev. Lett. 89, 126103 (2002).

    Article  CAS  Google Scholar 

  16. B.W. Sheldon, K.H.A. Lau, and A. Rajamani: Intrinsic stress, island coalescence, and surface roughness during the growth of polycrystalline films. J. Appl. Phys. 90, 5097 (2001).

    Article  CAS  Google Scholar 

  17. S.C. Seel and C.V. Thompson: Tensile stress generation during island coalescence for variable island-substrate contact angles. J. Appl. Phys. 93, 9038 (2003).

    Article  CAS  Google Scholar 

  18. A. Detor, A. Hodge, E. Chason, Y. Wang, H. Xu, M. Conyers, A. Nikroo, and A. Hamza: Stress and microstructure evolution in thick sputtered films. Acta Mater. 57, 2055 (2009).

    Article  CAS  Google Scholar 

  19. E.L. Alfonso, J.S. Jaquez, and A. Nikroo: Gas permeation barrier characterization by mass spectrometry. Fusion Sci. Technol. 49, 773 (2006).

    Article  CAS  Google Scholar 

  20. J. Ilavsky and P.R. Jemian: Irena: Tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 42, 347 (2009).

    CAS  Google Scholar 

  21. L.B. Freund and S. Suresh: Thin film materials: Stress, defect formation, and surface evolution (Cambridge University Press, Cambridge, 2003).

    Google Scholar 

  22. K. Okimura and T. Nakamura: Ionic densities and ionization fractions of sputtered titanium in radio frequency magnetron sputtering. J. Vac. Sci. Technol. A 21, 988 (2003).

    Article  CAS  Google Scholar 

  23. S.M. Rossnagel and J. Hopwood: Metal ion deposition from ionized magnetron sputtering discharge. J. Vac. Sci. Technol. B 12, 449 (1994).

    Article  CAS  Google Scholar 

  24. D. Aquaro and M. DiPrinzio: Molecular dynamics simulation of surface vaporization in beryllium plasma facing components. Fusion Eng. Des. 82, 1681 (2007).

    Article  CAS  Google Scholar 

  25. L.A. Zepeda-Ruiz, E. Chason, G. Gilmer, Y. Wang, H. Xu, A. Nikroo, and A. Hamza: Understanding the relation between stress and surface morphology in sputtered films: Atomistic simulations and experiments. Appl. Phys. Lett. 95, 151910 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by U.S. DOE under contract DE-AC52-06NA27279. Authors would like to acknowledge J. Ilavsky for the USAXS experiments and the APS, which was supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Alford, C., Chason, E. et al. Thick beryllium coatings by ion-assisted magnetron sputtering. Journal of Materials Research 27, 822–828 (2012). https://doi.org/10.1557/jmr.2011.378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.378

Navigation