Skip to main content
Log in

Analysis of resistance switching and conductive filaments inside Cu-Ge-S using in situ transmission electron microscopy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In situ transmission electron microscopy (TEM) was carried out to investigate the dynamics of resistance switching in a solid electrolyte, Cu-Ge-S. By applying voltage to Pt-Ir/Cu-Ge-S/Pt-Ir, where Pt-Ir constituted the electrodes, a deposit containing conductive filaments composed mainly of Cu was formed around the cathode. As voltage continued to be applied, the deposit grew and finally narrow conductive filaments made contact with the anode. This corresponded to resistance switching from high- to low-resistance states (HRS and LRS). By alternating the voltage, the deposit contracted toward the cathode and detached from the anode. The resistance immediately changed from LRS to HRS. By applying voltage, the deposit containing Cu-based filaments grew and shrank, and resistance switching occurred at the electrolyte-anode interface. This conductive filament-formation model, which was recently reported, was experimentally confirmed with TEM through dynamic observations of the deposit-containing filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.

Similar content being viewed by others

REFERENCES

  1. S.Q. Liu, N.J. Wu, and A. Ignatiev: Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749 (2000).

    Article  CAS  Google Scholar 

  2. A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokuda: Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073 (2004).

    Article  CAS  Google Scholar 

  3. H. Kaji, H. Kondo, T. Fujii, M. Arita, and Y. Takahashi: Effect of electrode and interface oxide on the property of ReRAM composed of Pr0.7Ca0.3MnO3. IOP Conf. Ser. Mater. Sci. Eng. 8, 012032 (2010).

    Article  Google Scholar 

  4. I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.-S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U-In Chung, and J.T. Moon: Highly scalable non-volataile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. Tech. Dig. Int. Electron Devices Meet. (San Francisco, CA, 2004), pp. 587–590.

    Google Scholar 

  5. A. Sawa: Resistive switching in transition metal oxides. Mater. Today 11, 28 (2008).

    Article  CAS  Google Scholar 

  6. G.-S. Park, X.-S. Li, D.-C. Kim, R.-J. Jung, M.-J. Lee, and S. Seo: Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl. Phys. Lett. 91, 222103 (2007).

    Article  Google Scholar 

  7. H. Kondo, H. Kaji, T. Fujii, K. Hamada, M. Arita, and Y. Takahashi: The influence of annealing temperature on ReRAM characteristics of metal/NiO/metal structure. IOP Conf. Ser. Mater. Sci. Eng. 8, 012034 (2010).

    Article  Google Scholar 

  8. C. Yoshida, K. Tsunoda, H. Noshiro, and Y. Sugiyama: High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application. Appl. Phys. Lett. 91, 223510 (2007).

    Article  Google Scholar 

  9. K. Fujiwara, T. Nemoto, M.J. Rozenberg, Y. Nakamura, and H. Takagi: Resistance switching and formation of a conductive bridge in metal/binary oxide/metal structure for memory devices. Jpn. J. Appl. Phys. 47, 6266 (2008).

    Article  CAS  Google Scholar 

  10. M.N. Kozicki, M. Park, and M. Mitkova: Nanoscale memory elements based on solid-state electrolytes. IEEE. Trans. Nanotechnol. 4, 331 (2005).

    Article  Google Scholar 

  11. M.N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, and M. Mitkova: Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S electrolytes. Proc. IEEE Non-Volatile Memory Technol. Symp. (Dallas, TX, 2005), pp. 83–89.

    Google Scholar 

  12. M.N. Kozicki, C. Ratnakumar, and M. Mitkova: Electrodeposit formation in solid electrolytes. Proc. IEEE Non-Volatile Memory Technol. Symp. San Mateo, CA, 2006), pp. 111–115.

    Google Scholar 

  13. D. Kamalanathan, U. Russo, D. Ielmini, and M.N. Kozicki: Voltage-driven on-off transition and tradeoff with program and erase current in programmable metallization cell (PMC) memory. IEEE Electron Device Lett. 30, 533 (2009).

    Article  Google Scholar 

  14. T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono: Nanometer-scale switching using copper sulfide. Appl. Phys. Lett. 82, 3032 (2003).

    Article  CAS  Google Scholar 

  15. K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono: Quantized conductance atomic switch. Nature 433, 47 (2005).

    Article  CAS  Google Scholar 

  16. Z. Xu, Y. Bando, W. Wang, X. Bai, and D. Golberg: Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 4, 2515 (2010).

    Article  CAS  Google Scholar 

  17. S. Tsui, A. Baikalov, J. Cmaidalka, Y.Y. Sun, Y.Q. Wang, Y.Y. Xue, C.W. Chu, L. Chen, and A.J. Jacobson: Field-induced resistive switching in metal-oxide interfaces. Appl. Phys. Lett. 85, 317 (2004).

    Article  CAS  Google Scholar 

  18. Y.B. Nian, J. Srozier, N.J. Wu, X. Chen, and A. Ignatiev: Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403 (2007).

    Article  CAS  Google Scholar 

  19. R. Waser and M. Aono: Nanoionics-based resistive switching memories. Nat Mater. 6, 833 (2007).

    Article  CAS  Google Scholar 

  20. R. Waser, R. Dittmann, G. Staikov, and K. Szot: Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009).

    Article  CAS  Google Scholar 

  21. Y. Tsujii, T. Sakamoto, N. Banno, H. Hada, and M. Aono: Off-state and turn-on characteristics of solid electrolyte switch. Appl. Phys. Lett. 96, 023504 (2010).

    Article  Google Scholar 

  22. T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono: Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91, 092110 (2007).

    Article  Google Scholar 

  23. C. Schindler, G. Staikov, and R. Waiser: Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl. Phys. Lett. 94, 072109 (2009).

    Article  Google Scholar 

  24. M. Tada, T. Sakamoto, N. Banno, M. Aono, H. Hada, N. Kasai: Nonvolatile crossbar switch using TiOx/TaSiOy solid electrolyte. IEEE Trans. Electron Devices 57, 1987 (2010).

    Article  CAS  Google Scholar 

  25. K. Aratani, K. Ohba, T. Mizuguchi, S. Yasuda, T. Shiimoto, T. Tsushima, T. Sone, K. Endo, A. Kouchiyama, S. Sasaki, A. Maesaka, N. Yamada, and H. Narisawa: A novel resistance memory with high scalability and nanosecond switching. Tech. Dig. Int. Electron Devices Meet. Washington, D.C., 2007), pp. 783–786.

    Google Scholar 

  26. R. Yasuhara, K. Fujiwara, K. Horiba, H. Kumigashira, M. Kotsugi, M. Oshima, and H. Takagi: Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure. Appl. Phys. Lett. 95, 012110 (2009).

    Article  Google Scholar 

  27. H. Ohnishi, Y. Kondo, and K. Takayanagi: Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780 (1998).

    Article  CAS  Google Scholar 

  28. T. Kizuka, S. Umehara, and S. Fujiwara: Metal-insulator transition in stable one-dimensional arrangements of single gold atoms. Jpn. J. Appl. Phys. 40, L71 (2001).

    Article  CAS  Google Scholar 

  29. M. Arita, Y. Okubo, K. Hamada, Y. Takahashi: Tunnel current measurement of MgO and MgO/Fe/MgO nanoregions during TEM observation. Superlattices Microstruct 44, 633 (2008).

    Article  CAS  Google Scholar 

  30. C.H. Jooss, J. Hoffmann, J. Fladerer, M. Ehrhardt, T. Beetz, L. Wu, and Y. Zhu: Electric pulse induced resistance change effect in manganites due to polaron localization at the metal-oxide interfacial region. Phys. Rev. B 77, 132409 (2008).

    Article  Google Scholar 

  31. T. Fujii, H. Kaji, H. Kondo, K. Hamada, M. Arita, and Y. Takahashi: I-V hysteresis of Pr0.7Ca0.3MnO3 during TEM observation. IOP Conf. Ser. Mater. Sci. Eng. 8, 012033 (2010).

    Article  Google Scholar 

  32. D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C.S. Hwang: Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148 (2010).

    Article  CAS  Google Scholar 

  33. T. Fujii, M. Arita, K. Hamada, H. Kondo, H. Kaji, Y. Takahashi, M. Moniwa, I. Fujiwara, T. Yamaguchi, M. Aoki, Y. Maeno, T. Kobayashi, and M. Yoshimaru: I-V measurement of NiO nanoregion during observation by transmission electron microscopy. J. Appl. Phys. 109, 053702 (2011).

    Article  Google Scholar 

  34. D. Cha, S.J. Ahn, S.Y. Park, H. Horii, D.H. Kim, Y.K. Kim, S.O. Park, U.I. Jung, M.J. Kim, and J. Kim: A direct observation on the structure evolution of memory-switching phenomena using in-situ TEM. Dig. Tech. Symp. VLSI Technol. Kyoto, Japan, 2009), pp. 204–205.

    Google Scholar 

  35. P. Gao, Z. Wang, W. Fu, Z. Liao, K. Liu, W. Wang, X. Bai, and E. Wang: In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron 41, 301 (2010).

    Article  CAS  Google Scholar 

  36. R. Hirose, M. Arita, K. Hamada, and Y. Takahashi: In situ conductance measurement of a limited number of nanoparticles during transmission electron microscopy observation. Jpn. J. Appl. Phys. 44, L790 (2005).

    Article  CAS  Google Scholar 

  37. T. Fujii, M. Arita, Y. Takahashi, and I. Fujiwara: In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching. Appl. Phys. Lett. 98, 212104 (2011).

    Article  Google Scholar 

  38. R. Hirose, M. Arita, K. Hamada, and A. Okada: Tip production technique to form ferromagnetic nanodots. Mater. Sci. Eng. C 23, 927 (2003).

    Article  Google Scholar 

  39. T. Hamada and F.E. Fujita: Interference function of crystalline embryo model of amorphous metals 1. Jpn. J. Appl. Phys. 21, 981 (1982).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We wish to thank Mr. S. Yasuda (Sony Corporation) for his collaboration in fabricating the devices, and Drs. M. Moniwa, T. Yamaguchi, and M. Yoshimaru (Semiconductor Technology Academic Research Center) for the productive discussions we had with them. We are grateful to Dr. K. Hamada for developing our piezo TEM holder. The TEM-EDX analyses were performed at the Center for Advanced Research of Energy and Materials (CAREM) of Hokkaido University with the kind support of Prof. N. Sakaguchi, to whom also we are grateful. Our research was partially supported by a grant from the Global COE Program, “Center for Next-Generation Information Technology Based on Knowledge Discovery and Knowledge Federation,” made available by The Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and by Grants-in Aid for Scientific Research (KAKENHI) from MEXT and the Japan Society for the Promotion of Science (JSPS) (Grant Nos. 21560681 and 22240022)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, T., Arita, M., Takahashi, Y. et al. Analysis of resistance switching and conductive filaments inside Cu-Ge-S using in situ transmission electron microscopy. Journal of Materials Research 27, 886–896 (2012). https://doi.org/10.1557/jmr.2011.437

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.437

Navigation