Skip to main content
Log in

Measurement of the micromechanical properties of nanostructured aggregates via nanoindentation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Depending on the application of nanoparticles, certain characteristics of the product quality such as size, morphology, abrasion resistance, specific surface, and tendency to agglomeration are important. These characteristics are a function of the physicochemical properties of the nanostructured material and, thus, of the process parameters of the particle synthesis. Because of econimical reasons in large-scale production such as pyrolysis or precipitation processes, nanosized particles are produced not as single primary particles but rather as aggregates or agglomerates. The application properties of these aggregates are strongly affected by the micromechanical properties, which can be measured via nanoindentation. In this study, a flat punch method was used. For the measurements, model aggregates out of sol–gel produced silica with varying primary particle size and strength of solid bonds were used. Generally, the micromechanical properties can be characterized by measuring the micromechanical properties via nanoindentation and be described by different theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE I.
FIG. 7.
FIG. 8.
TABLE II.
TABLE III.
TABLE IV.
FIG. 9.
TABLE V.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.

Similar content being viewed by others

REFERENCES

  1. J. Winkler: Nanopigmente dispergieren. Farbe und Lack 2, 35 (2006).

    Google Scholar 

  2. C. Schilde, S. Breitung-Faes, and A. Kwade: Dispersing and grinding of alumina nano particles by different stress mechanisms. Ceram. Forum Int. 84, 12 (2007).

    Google Scholar 

  3. K. Kendall and T.P. Weihs: Adhesion of nanoparticles within spray dried agglomerates. Appl. Phys. (Berl.) 25, 3 (1992).

    Google Scholar 

  4. Y. Raichman, M. Kazakevich, E. Rabkin, and Y. Tsur: Inter-nanoparticle bonds in agglomerates studied by nanoindentation. Adv. Mater. 18, 2028 (2006).

    Article  CAS  Google Scholar 

  5. M.J. Adams, A. Akram, B.J. Briscoe, C. Lawrence, and D. Parsonage: Nanoindentation of particulate coatings. J. Mater. Res. 14, 2344 (1999).

    Article  CAS  Google Scholar 

  6. C.R. Perrey, W.M. Mook, C.B. Carter, and W.W. Gerberich: Characterization of mechanical deformation of nanoscale volumes, in Nanomaterials for Structural Applications, edited by C.C. Berndt, T.E. Fischer, I. Ovid’ko, G. Skandan, and T. Tsakalakos (Mater. Res. Soc. Symp. Proc. 740, Warrendale, PA, 2003), I3.13, p. 87.

    Google Scholar 

  7. W.W. Gerberich, W.M. Mook, M. Cordill, J. Jungk, B. Boyce, T. Friedmann, N. Moody, and D. Yang: Nanoprobing fracture length scales. Adv. Fract. Res. 138, 75 (2006).

    Article  CAS  Google Scholar 

  8. W.M. Mook, J.D. Nowak, C.R. Perrey, C.B. Carter, R. Mukherjee, S.L. Girshick, P.H. Mcmurry, and W.W. Gerberich: Compressive stress effects on nanoparticle modulus and fracture. Phys. Rev. B 75, 214112 (2007).

    Article  Google Scholar 

  9. M. Roth, C. Schilde, P. Lellig, A. Kwade, and G.K. Auerhammer: Colloidal aggregates tested via nanoindentation and simultaneous 3D imaging. Stat. Mech. (2011, in press).

    Google Scholar 

  10. W. Stöber, A. Fink, and E. Bohn: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).

    Article  Google Scholar 

  11. C. Gellermann, T. Ballweg, and H. Wolter: Herstellung von funktionalisierten oxidischen Nano- und Mikropartikeln und deren Verwendung. Chemie Ingenieur Technik 79, 233 (2007).

    Article  CAS  Google Scholar 

  12. J. Arfsten, C. Bradtmöller, I. Kampen, and A. Kwade: Compressive testing of single yeast cells in liquid environment using a nanoindentation system. J. Mater. Res. 23, 3153 (2008).

    Article  CAS  Google Scholar 

  13. S. Antonyuk, J. Tomas, S. Heinrich, and L. Mörl: Breakage behavior of spherical granulates by compression. Chem. Eng. Sci. 60, 4031 (2005).

    Article  CAS  Google Scholar 

  14. A. Balakrishnan, P. Pizette, C.L. Martin, S.V. Joshi, and B.P. Saha: Effect of particle size in aggregated and agglomerated ceramic powders. Acta Mater. 58, 802 (2010).

    Article  CAS  Google Scholar 

  15. R. Bartali, V. Micheli, A. Gottardi, and N. Laidani: Nanoindentation: Unload-to-load work ratio analysis in amorphous carbon films for mechanical properties. Surf. Coat. Tech. 204, 2073 (2010).

    Article  CAS  Google Scholar 

  16. J. Malzbender and G. De Witt: Indentation load-displacement curve, plastic deformation, and energy. J. Mater. Res. 17, 502 (2002).

    Article  CAS  Google Scholar 

  17. J. Malzbender and G. De Witt: Energy dissipation, fracture toughness and the indentation load–displacement curve of coated materials. Surf. Coat. Tech. 135, 60 (2000).

    Article  CAS  Google Scholar 

  18. S. Antonyuk, S. Palis, and S. Heinrich: Breakage behavior of agglomerates and crystals by static loading and impact. Powder Technol. 206, 88 (2010).

    Article  Google Scholar 

  19. J. Arfsten, I. Kampen, and A. Kwade: Mechanical testing of single yeast cells in liquid environment: Effect of the extracellular osmotic conditions on the failure behavior. Int. J. Mater. Res. 100, 978 (2009).

    Article  CAS  Google Scholar 

  20. C. Schilde, T. Gothsch, K. Quarch, M. Kind, and A. Kwade: Effect of important process parameters on the redispersion process and the micromechanical properties of precipitated silica. Chem. Eng. Technol. 32, 1078 (2009).

    Article  CAS  Google Scholar 

  21. J. Arfsten: Mikromechanische Charakterisierung von Saccharomyces cerevisiae (TU Braunschweig, Braunschweig, 2009).

    Google Scholar 

  22. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Int. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  23. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  24. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  25. W. Goldsmith: Impact (Edward Arnold, London, 1960).

    Google Scholar 

  26. H. Hertz: Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik 92, 156 (1881).

    Google Scholar 

  27. Y-T. Cheng and C-M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 (2004).

    Article  Google Scholar 

  28. H. Rumpf: Zur Theorie der Zugfestigkeit von Agglomeraten bei Kraftübertragung an Kontaktpunkten. Chemie Ingenieur Technik 42, 538 (1970).

    Article  Google Scholar 

  29. H. Rumpf: Particle adhesion, 2nd Int. Symp. Agglomeration, Atlanta, Conf. Proc., 97, (1977).

  30. D. Bika, G.I. Tardos, S. Panmai, L. Farber, and J. Michaels: Strength and morphology of solid bridges in dry granules of pharmaceutical powders. Powder Technol. 150, 104 (2005).

    Article  CAS  Google Scholar 

  31. R.K. Iler: The Chemistry of Silica, New York, 1979).

    Google Scholar 

  32. F.C. Bond: Crushing tests by pressure and impact. Mining technology. Technical Preprint No. 1895, 169, 58 (1946).

    Google Scholar 

  33. W.P.L. Vogel: From single particle impact behavior to modelling of impact mills. Chem. Eng. Sci. 60, 5164 (2005).

    Article  CAS  Google Scholar 

  34. C. Schilde, S. Beinert, and A. Kwade: Comparison of the micromechanical aggregate properties of nanostructured aggregates with the stress conditions during stirred media milling. Chem. Eng. Sci. 66, 4943 (2011).

    Article  CAS  Google Scholar 

  35. Y-T. Cheng and C.M. Cheng: Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73, 614 (1998).

    Article  CAS  Google Scholar 

  36. B.R. Lawn and V.R. Howes: Elastic recovery at hardness indentations. J. Mater. Sci. 16, 2745 (1981).

    Article  CAS  Google Scholar 

  37. J. Mencik and M.V. Swain: Micro-indentation tests with pointed indenters. Mater. Forum 18, 277 (1994).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of the German Research Foundation (DFG) within the priority programme (SPP) “colloid technology.” The SEM pictures were kindly taken by the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig. The FIB pictures were kindly taken by Michael Kappl, Max Planck Institute for Polymer Research, Mainz. The Fraunhofer Institut für Silicatforschung, Würzburg, are acknowledged for the supply of the model silica aggregates produced by sol–gel synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Schilde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilde, C., Kwade, A. Measurement of the micromechanical properties of nanostructured aggregates via nanoindentation. Journal of Materials Research 27, 672–684 (2012). https://doi.org/10.1557/jmr.2011.440

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.440

Navigation