Skip to main content
Log in

Realization of high thermoelectric performance in n-type partially filled skutterudites

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Skutterudites are among the most exciting thermoelectric (TE) materials that could be used for various intermediate temperature applications. This study summarized our recent work on n-type partially filled skutterudites. By combining theoretical and experimental approaches, we revealed the underlying mechanism of void filling in the intrinsic lattice voids in CoSb3. With that, the electronegativity selection rule is established for the current stable filled skutterudites and further used for the discovery of a few novel filled CoSb3 compounds. The correlation between the thermal/electrical transport properties and impurity fillers in n-type partially filled skutterudites was also carefully investigated. Our results provide fundamental understanding to how those filler impurities affect electronic structures and lattice dynamics. Based on these basic understanding on transport mechanisms and sophisticated strategy in materials synthesis, TE figure of merit for n-type materials were continually increased from 1.1 to 1.4 and then to 1.7 for single-, double-, and triple-filled skutterudites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE II.
FIG. 6.
FIG. 7.

Similar content being viewed by others

REFERENCES

  1. J. Yang and T. Caillat: Thermoelectric materials for space and automotive power generation. MRS Bull. 31, 224 (2006).

    Article  CAS  Google Scholar 

  2. G.J. Snyder and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  3. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  4. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge: Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229 (2002).

    Article  CAS  Google Scholar 

  5. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  6. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidiset: Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).

    Article  CAS  Google Scholar 

  7. B.C. Sales, D. Mandrus, and R.K. Williams: Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  8. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang: Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Appl. Phys. Lett. 92, 182101 (2008).

    Article  CAS  Google Scholar 

  9. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008).

    Article  CAS  Google Scholar 

  10. J. Rhyee, K.H. Lee, S.M. Lee, E. Cho, S.I. Kim, E. Lee, Y.S. Kwon, J.H. Shim, and G. Kotliar: Peierls distortion as a route to high thermoelectric performance in In4Se3-delta crystals. Nature 459, 965 (2009).

    Article  CAS  Google Scholar 

  11. B.C. Sales, D.G. Mandrus, and B.C. Chakoumakos: Semiconductors and semimetals, in Recent Trends in Thermoelectric Materials Research II, Vol. 70, edited by T.M. Tritt (Academic, San Diego, 2000), pp. 1–36.

    Google Scholar 

  12. C. Uher: Semiconductors and semimetals, in Recent Trends in Thermoelectric Materials Research II, Vol. 69, edited by T.M. Tritt (Academic, San Diego, 2000), pp. 139–253.

    Article  Google Scholar 

  13. W. Jeitschko and D.J. Brown: LaFe4P12 with filled CoAs3-type structure and isotypic lanthanoid–transition metal polyphosphides. Acta Crystallogr. B 33, 3401 (1977).

    Article  Google Scholar 

  14. D.J. Brown and W. Jeitschko: Ternary arsenides with LaFe4P12-type structure. J. Solid State Chem. 32, 357 (1980).

    Article  Google Scholar 

  15. D.J. Brown and W. Jeitschko: Preparation and structural investigations of antimonides with the LaFe4P12 structure. J. Less-Common Met. 72, 147 (1980).

    Article  Google Scholar 

  16. D.J. Brown and W. Jeitschko: Thorium-containing pnictides with the LaFe4P12 structure. J. Less-Common Met. 76, 33 (1980).

    Article  Google Scholar 

  17. G.A. Slack: CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC, Boca Raton, FL, 1995), pp. 407–440.

  18. D.T. Morelli and G.P. Meisner: Low-temperature properties of the filled skutterudite CeFe4Sb12. J. Appl. Phys. 77, 3777 (1995).

    Article  CAS  Google Scholar 

  19. D.A. Gajewski, N.R. Dilley, E.D. Bauer, E.F. Freeman, R. Chau, M.B. Maple, D. Mandrus, B.C. Sales, and A.H. Lacerda: Heavy fermion behaviour of the cerium-filled skutterudites CeFe4Sb12 and Ce0.9Fe3CoSb12. J. Phys. Condens. Matter 10, 6973 (1998).

    Article  CAS  Google Scholar 

  20. M.E. Danebrock, C.B.H. Evers, and W. Jeitschko: Magnetic properties of alkaline earth and lanthanoid iron antimonides AFe4Sb12 (A = Ca, Sr, Ba, La—Nd, Sm, Eu) with the LaFe4P12 structure. J. Phys. Chem. Solids 57, 381 (1996).

    Article  CAS  Google Scholar 

  21. N.R. Dilley, E.J. Freedman, E.D. Bauer, and M.B. Maple: Intermediate valence in the filled skutterudite compound YbFe4Sb12. Phys. Rev. B 58, 6287 (1998).

    Article  CAS  Google Scholar 

  22. B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens, and J.R. Thompson: Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B 56, 15081 (1997).

    Article  CAS  Google Scholar 

  23. B.C. Sales, B.C. Chakoumakos, D. Mandrus, and J.W. Sharp: Atomic displacement parameters and the lattice thermal conductivity of Clathrate-like thermoelectric compounds. J. Solid State Chem. 146, 528 (1999).

    Article  CAS  Google Scholar 

  24. T.M. Tritt, G.S. Nolas, G.A. Slack, A.C. Ehrlich, D.J. Gillespie, and J.L. Cohn: Low-temperature transport properties of the filled and unfilled IrSb3 skutterudite system. J. Appl. Phys. 79, 8412 (1996).

    Article  CAS  Google Scholar 

  25. B. Chen, J.H. Xu, C. Uher, D.T. Morelli, G.P. Meisner, J.-P. Fleurial, T. Caillat, and A. Borshchevsky: Low-temperature transport properties of the filled skutterudites CeFe4-xCoxSb12. Phys. Rev. B 55, 1476 (1997).

    Article  CAS  Google Scholar 

  26. L. Chapon, D. Ravot, and J.C. Tedenac: Nickel substituted skutterudites: Synthesis and physical properties, in Thermoelectric Materials 1998-The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon Jr. (Mater. Res. Soc. Symp. Proc. 545, Warrendale, PA, 1999), p. 321.

    Google Scholar 

  27. G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, and C. Uher: Structure and lattice thermal conductivity of fractionally filled skutterudites: Solid solutions of fully filled and unfilled end members. Phys. Rev. Lett. 80, 3551 (1998).

    Article  CAS  Google Scholar 

  28. J.-P. Fleurial, T. Caillat, and A. Borshchevsky: Skutterudites: An update, in Proceedings of the 16th International Conference on Thermoelectrics, (Piscataway, NJ, 1997), p. 1.

  29. L.D. Dudkin and N. K.H. Abrikosov: On the doping of the semiconductor compound CoSb3, Sov. Phys. Solid State 1, 126 (1959).

    Google Scholar 

  30. L.D. Dudkin and N. K.H. Abrikosov: A physicochemical investigation of cobalt antimonides. J. Inorg. Chem. 1, 169 (1956).

    Google Scholar 

  31. B.N. Zobrina and L.D. Dudkin: Investigation of the Thermoelectric Properties of CoSb3 with Sn, Te, and Ni Impurities, Sov. Phys. Solid State 1, 1668 (1960).

    Google Scholar 

  32. T. Koyanagi, T. Tsubouchi, M. Ohtani, K. Kishimoto, H. Anno, and K. Matsubara: Thermoelectric properties of Co(MxSb1-x)3 (M=Ge, Sn, Pb) compounds, in Proceedings of the 15th International Conference on Thermoelectrics, (Piscataway, NJ, 1996), p. 107.

  33. K.L. Stokes, A.C. Ehrlich, and G.S. Nolas: Thermal conductivity of Fe-doped CoSb3 skutterudites, in Thermoelectric Materials 1998- The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon Jr. (Mater. Res. Soc. Symp. Proc. 545, Warrendale, PA, 1999), p. 339.

    Google Scholar 

  34. H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara, and H. Tashiro: Effects of doping on the transport properties of CoSb3. J. Appl. Phys. 86, 3780 (1999).

    Article  CAS  Google Scholar 

  35. Y. Nagamoto, K. Tanaka, and T. Koyanagi: Transport properties of heavily doped n-type CoSb3, in Proceedings of the 17th International Conference on Thermoelectrics, (Piscataway, NJ, 1998), p. 302.

  36. D.T. Morelli, G.P. Meisner, B.X. Chen, S.Q. Hu, and C. Uher: Cerium filling and doping of cobalt triantimonide. Phys. Rev. B 56, 7376 (1997).

    Article  CAS  Google Scholar 

  37. G.S. Nolas, J.L. Cohn, and G.A. Slack: Effect of partial void filling on the lattice thermal conductivity of skudderudites. Phys. Rev. B 58, 164 (1998).

    Article  CAS  Google Scholar 

  38. V.L. Kuznetsov, L.A. Kuznetsova, and D.M. Rowe: Effect of partial void filling on the transport properties of NdxCo4Sb12 skutterudites. J. Phys. Condens. Matter 15, 5035 (2003).

    Article  CAS  Google Scholar 

  39. G.A. Lamberton Jr., S. Bhattacharya, R.T. Littleton IV, M.A. Kaeser, R.H. Tedstrom, T.M. Tritt, J. Yang, and G.S. Nolas: High figure of merit in Eu-filled CoSb3-based skutterudites. Appl. Phys. Lett. 80, 598 (2002).

    Article  CAS  Google Scholar 

  40. G.S. Nolas, M. Kaeser, R.T. Littleton IV, and T.M. Tritt: High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 77, 1855 (2000).

    Article  CAS  Google Scholar 

  41. B.C. Sales, B.C. Chakoumakos, and D. Mandrus: Thermoelectric properties of thallium-filled skutterudites. Phys. Rev. B 61, 2475 (2000).

    Article  CAS  Google Scholar 

  42. M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, and E. Müller: High temperature transport properties of partially filled CaxCo4Sb12 skutterudites. J. Appl. Phys. 95, 4852 (2004).

    Article  CAS  Google Scholar 

  43. M. Puyet, A. Dauscher, B. Lenoir, M. Dehmas, C. Stiewe, E. Müller, and J. Hejtmanek: Beneficial effect of Ni substitution on the thermoelectric properties in partially filled CayCo4-xNixSb12 skutterudites. J. Appl. Phys. 97, 083712 (2005).

    Article  CAS  Google Scholar 

  44. L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher: Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phys. 90, 1864 (2001).

    Article  CAS  Google Scholar 

  45. J.S. Dyck, W. Chen, C. Uher, L. Chen, X.F. Tang, and T. Hirai: Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni. J. Appl. Phys. 91, 3698 (2002).

    Article  CAS  Google Scholar 

  46. G.S. Nolas, H. Takizawa, T. Endo, H. Sellinschegg, and D.C. Johnson: Thermoelectric properties of Sn-filled skutterudites. Appl. Phys. Lett. 77, 52 (2000).

    Article  CAS  Google Scholar 

  47. G. S. Nolas, J. Yang, and H. Takizawa: Transport properties of germanium-filled CoSb3. Appl. Phys. Lett. 84, 5210 (2004).

    Article  CAS  Google Scholar 

  48. Y.Z. Pei, L.D. Chen, W. Zhang, X. Shi, S.Q. Bai, X.Y. Zhao, Z.G. Mei, and X.Y. Li: Synthesis and thermoelectric properties of KyCo4Sb12. Appl. Phys. Lett. 89, 221107 (2006).

    Article  CAS  Google Scholar 

  49. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei: Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties. J. Appl. Phys. 99, 053711 (2006).

    Article  CAS  Google Scholar 

  50. Y.Z. Pei, J. Yang, L.D. Chen, W. Zhang, J.R. Salvador, and J.H. Yang: Improving thermoelectric performance of caged compounds through light-element filling. Appl. Phys. Lett. 95, 042101 (2009).

    Article  CAS  Google Scholar 

  51. Y.Z. Pei, S.Q. Bai, X.Y. Zhao, W. Zhang, and L.D. Chen: Thermoelectric properties of EuyCo4Sb12 filled skutterudites. Solid State Sci. 10, 1422 (2008).

    Article  CAS  Google Scholar 

  52. J. Yang, Q. Hao, H. Wang, Y.C. Lan, Q.Y. He, A. Minnich, D.Z. Wang, J.A. Harriman, V.M. Varki, M.S. Dresselhaus, G. Chen, and Z.F. Ren: Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. Phys. Rev. B 80, 115329 (2009).

    Article  CAS  Google Scholar 

  53. T. He, J.Z. Chen, H.D. Rosenfeld, and M.A. Subramanian: Thermoelectric properties of indium-filled skutterudites. Chem. Mater. 18, 759 (2006).

    Article  CAS  Google Scholar 

  54. N.R. Dilley, E.D. Bauer, M.B. Maple, and B.C. Sales: Thermoelectric properties of chemically substituted skutterudites YbyCo4SnxSb12-x. J. Appl. Phys. 88, 1948 (2000).

    Article  CAS  Google Scholar 

  55. D.J. Singh and W.E. Pickett: Skutterudite antimonides: Quasilinear bands and unusual transport. Phys. Rev. B 50, 11235 (1994).

    Article  CAS  Google Scholar 

  56. D.J. Singh and I.I. Mazin: Calculated thermoelectric properties of La-filled skutterudites. Phys. Rev. B 56, R1650 (1997).

    Article  CAS  Google Scholar 

  57. D.J. Singh, L. Nordstrom, W.E. Pickett, and J.L. Feldman: Electronic and vibrational properties of skutterudites, in Proceedings of the 15th International Conference on Thermoelectrics, (Piscataway, NJ, 1996), p. 84.

  58. D.J. Singh, I.I. Mazin, S.G. Kim, and L. Nordström: Computational studies of novel thermoelectric materials, in Thermoelectric Materials-New Directions and Approaches, edited by T.M. Tritt, G.D. Mahan, H.B. Lyon Jr., and M.G. Kanatzidis (Mater. Res. Soc. Symp. Proc. 478, Pittsburgh, PA}, 1997}), p.

    Google Scholar 

  59. D.J. Singh and M. Du: Properties of alkaline-earth-filled skutterudite antimonides: A(Fe, Ni)4Sb12 (A=Ca, Sr, and Ba). Phys. Rev. B 82, 075115 (2010).

    Article  CAS  Google Scholar 

  60. D.J. Singh, I.I. Mazin, J.L. Feldman, and M. Fornari: Properties of novel thermoelectrics from first-principles calculations, in Thermoelectric Materials 1998-The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon Jr. (Mater. Res. Soc. Symp. Proc. 545, Warrendale, PA, 1999), p. 3.

    Google Scholar 

  61. M. Llunell, P. Alemany, S. Alvarez, and V.P. Zhukov: Electronic structure and bonding in skutterudite-type phosphides. Phys. Rev. B 53, 10605 (1996).

    Article  CAS  Google Scholar 

  62. O.M. Løvvik and Ø. Prytz: Density-functional band-structure calculations for La-, Y-, and Sc-filled CoP3-based skutterudite structures. Phys. Rev. B 70, 195119 (2004).

    Article  CAS  Google Scholar 

  63. L. Bertin and C. Gatti: The impact of the actual geometrical structure of a thermoelectric material on its electronic transport properties: The case of doped skutterudite systems. J. Chem. Phys. 121, 8983 (2004).

    Article  CAS  Google Scholar 

  64. J.O. Sofo and G.D. Mahan: Electronic structure of CoSb3: A narrow-band-gap semiconductor. Phys. Rev. B 58, 15620 (1998).

    Article  CAS  Google Scholar 

  65. H. Harima: FLAPW band structure calculation and fermi surface for LaFe4P12. J. Magn. Magn. Mater. 177, 321 (1998).

    Article  Google Scholar 

  66. X. Shi, W. Zhang, L.D. Chen, and J. Yang: Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites. Phys. Rev. Lett. 95, 185503 (2005).

    Article  CAS  Google Scholar 

  67. X. Shi, W. Zhang, L.D. Chen, J. Yang, and C. Uher: Theoretical study of the filling fraction limits for impurities in CoSb3. Phys. Rev. B 75, 235208 (2007).

    Article  CAS  Google Scholar 

  68. L. Jiong, Yang Xi, W. Zhang, L. Chen, and Jihui Yang: Electrical transport properties of filled CoSb3 skutterudites: A theoretical study. J. Electron. Mater. 38, 1397 (2009).

    Article  CAS  Google Scholar 

  69. Z.G. Mei, W. Zhang, L.D. Chen, and J. Yang: Filling fraction limits for rare-earth atoms in CoSb3: An ab initio approach. Phys. Rev. B 74, 153202 (2006).

    Article  CAS  Google Scholar 

  70. W. Zhang, X. Shi, Z.G. Mei, Y. Xu, L.D. Chen, J. Yang, and G.P. Meisner: Predication of an ultrahigh filling fraction for K in CoSb3. Appl. Phys. Lett. 89, 112105 (2006).

    Article  CAS  Google Scholar 

  71. Z.G. Mei, J. Yang, Y.Z. Pei, W. Zhang, and L.D. Chen: Alkali-metal-filled CoSb3 skutterudites as thermoelectric materials: Theoretical study. Phys. Rev. B 77, 045202 (2008).

    Article  CAS  Google Scholar 

  72. X. Shi, W. Zhang, L.D. Chen, J. Yang, and C. Uher: Thermodynamic analysis of the filling fraction limits for impurities in CoSb3 based on ab initio calculations. Acta Mater. 56, 1733 (2008).

    Article  CAS  Google Scholar 

  73. X. Shi, W. Zhang, L.D. Chen, and C. Uher: Phase-diagram-related problems in thermoelectric materials: Skutterudites as an example. Inter. J. Mater. Res. 99, 638 (2008).

    Article  CAS  Google Scholar 

  74. H. Li, X.F. Tang, Q.J. Zhang, and C. Uher: High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114 (2009).

    Article  CAS  Google Scholar 

  75. S.Q. Bai, Y.Z. Pei, L.D. Chen, W.Q. Zhang, X.Y. Zhao, and J. Yang: Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12. Acta Mater. 57, 3135 (2009).

    Article  CAS  Google Scholar 

  76. H.J. Goldsmid: Electronic Refrigeration (Pion Limited, London, 1986).

    Google Scholar 

  77. J. Yang, W. Zhang, S.Q. Bai, Z. Mei, and L.D. Chen: Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce, and Sr). Appl. Phys. Lett. 90, 192111 (2007).

    Article  CAS  Google Scholar 

  78. K. Dimitrov, M.E. Manley, S. M. Shapiro, J. Yang, W. Zhang, L.D. Chen, Q. Jie, G. Ehlers, A. Podlesnyak, J. Camacho, and Q. Li: Einstein modes in the phonon density of states of the single-filled skutterudite Yb0.2Co4Sb12. Phys. Rev. B 82, 174301 (2010).

    Article  CAS  Google Scholar 

  79. V. Keppens, D. Mandrus, B.C. Sales, B.C. Chakoumakos, P. Dai, R. Coldea, M.B. Maple, D.A. Gajewski, E.J. Freeman, and S. Bennington: Localized vibrational modes in metallic solids. Nature 395, 876 (1998).

    Article  CAS  Google Scholar 

  80. R.P. Hermann, R.J. Jin, W. Schweika, F. Grandjean, D. Mandrus, B.C. Sales, and G.J. Long: Einstein oscillators in thallium filled antimony skutterudites. Phys. Rev. Lett. 90, 135505 (2003).

    Article  CAS  Google Scholar 

  81. G.J. Long, R.P. Hermann, F. Grandjean, E.E. Alp, W. Sturhahn, C.E. Johnson, D.E. Brown, O. Leupold, and R. Rüffer: Strongly decoupled europium and iron vibrational modes in filled skutterudites. Phys. Rev. B 71, 140302(R) (2005).

    Article  CAS  Google Scholar 

  82. J.L. Feldman, P. Dai, T. Enck, B.C. Sales, D. Mandrus, and D.J. Singh: Lattice vibrations in La(Ce)Fe4Sb12 and CoSb3: Inelastic neutron scattering and theory. Phys. Rev. B 73, 014306 (2006).

    Article  CAS  Google Scholar 

  83. H.-C. Wille, R.P. Hermann, I. Sergueev, O. Leupold, P. van der Linden, B.C. Sales, F. Grandjean, G.J. Long, R. Rüffer, and Yu.V. Shvyd’ko: Antimony vibrations in skutterudites probed by 121Sb nuclear inelastic scattering. Phys. Rev. B 76, 140301(R) (2007).

    Article  CAS  Google Scholar 

  84. M.M. Koza, M.R. Johnson, R. Viennois, H. Mutka, L. Girard, and D. Ravot: Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat. Mater. 7, 805 (2008).

    Article  CAS  Google Scholar 

  85. G.S. Nolas, G.A. Slack, T. Caillat, and G.P. Meisner: Raman scattering study of antimon-ybased skutterudites. J. Appl. Phys. 79, 2622 (1996).

    Article  CAS  Google Scholar 

  86. G.S. Nolas and C.A. Kendziora: Raman spectroscopy investigation of lanthanide-filled and unfilled skutterudites. Phys. Rev. B 59, 6189 (1999).

    Article  CAS  Google Scholar 

  87. C. Sekine, H. Saito, T. Uchiumi, A. Sakai, and I. Shirotani: Micro-probed Raman scattering study of ternary ruthenium phosphides with filled skutterudite-type structure. Solid State Commun. 106, 441 (1998).

    Article  CAS  Google Scholar 

  88. L. Xi, J. Yang, W. Zhang, L. Chen, and J. Yang: Anomalous dual-element filling in partially filled skutterudites. J. Am. Chem. Soc. 131, 5560 (2009).

    Article  CAS  Google Scholar 

  89. L. Xi, J. Yang, C. Lu, Z. Mei, W. Zhang, and L. Chen: Systematic study of the multiple-element filling in caged skutterudite CoSb3. Chem. Mater. 22, 2384 (2010).

    Article  CAS  Google Scholar 

  90. D. Li, K. Yang, H.H. Hng, Q.Y. Yan, J. Ma, T.J. Zhu, and X.B. Zhao: Synthesis and high temperature thermoelectric properties of calcium and cerium double-filled skutterudites Ca0.1CexCo4Sb12. J. Phys. D: Appl. Phys. 42, 105408 (2009).

    Article  CAS  Google Scholar 

  91. G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, and M. Zehetbauer: Structural and physical properties of n-type skutterudite Ca0.07Ba0.23Co3.95Ni0.05Sb12. Intermetallics 18, 394 (2010).

    Article  CAS  Google Scholar 

  92. J.R. Salvador, J. Yang, H. Wang, and X. Shi: Double-filled skutterudites of the type YbxCayCo4Sb12: Synthesis and properties. J. Appl. Phys. 107, 043705 (2010).

    Article  CAS  Google Scholar 

  93. S.Q. Bai, X. Shi, and L.D. Chen: Lattice thermal transport in BaxREyCo4Sb12 (RE=Ce, Yb, and Eu) double-filled skutterudites. Appl. Phys. Lett. 96, 202102 (2010).

    Article  CAS  Google Scholar 

  94. S.Q. Bai, X.Y. Huang, L.D. Chen, W. Zhang, X.Y. Zhao, and Y.F. Zhou: Thermoelectric properties of n-type SrxMyCo4Sb12 (M=Yb, Ba) double-filled skutterudites. Appl. Phys. A Mater. Sci. Process 100, 1109 (2010).

    Article  CAS  Google Scholar 

  95. W.Y. Zhao, P. Wei, Q.J. Zhang, C.L. Dong, L.S. Liu, and X.F. Tang: Enhanced thermoelectric performance in Barium and Indium double-filled skutterudite bulk materials via orbital hybridization induced by Indium filler. J. Am. Chem. Soc. 131, 3713 (2009).

    Article  CAS  Google Scholar 

  96. X. Shi, J.R. Salvador, J. Yang, and H. Wang: Thermoelectric properties of n-type multiple-filled skutterudites. J. Electron. Mater. 38, 930 (2009).

    Article  CAS  Google Scholar 

  97. L. Zhang, A. Grytsiv, P. Rogl, E. Bauer, and M. Zehetbauer: High thermoelectric performance of triple-filled n-type skutterudites (Sr, Ba, Yb)yCo4Sb12. J. Phys. D: Appl. Phys. 42, 225405 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. T.M. Tritt and Dr. H. Böttner for inviting us to prepare this review. This work is in part supported by National Basic Research Program of China (973 program) under Project No. 2007CB607500 and by NSFC Grant (50821004 and 50825205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xun Shi or Wenqing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Bai, S., Xi, L. et al. Realization of high thermoelectric performance in n-type partially filled skutterudites. Journal of Materials Research 26, 1745–1754 (2011). https://doi.org/10.1557/jmr.2011.84

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.84

Navigation