Skip to main content
Log in

MgO–TiO2 mixed oxide nanoparticles: Comparison of flame synthesis versus aerogel method; characterization, and photocatalytic activities

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) and mixed oxides, i.e., mixtures of magnesium oxide and titanium dioxide (MgO–TiO2) with different ratios were synthesized by two methods—flame synthesis and aerogel, for comparison of their properties. The samples were characterized by powder x-ray diffraction (pXRD), energy-dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmet-Teller method of surface area measurements, ultraviolet-visible spectroscopy (UV-vis), and transition electron microscopic analysis. The pXRD patterns of different mixed oxides with different mole ratios revealed that there were formations of different compositions and phases. These mixed oxides were also used as photocatalysts in the UV-vis light to oxidize acetaldehyde, and carbon dioxide (CO2) was measured as a product. The mixed oxides with low content of MgO (∼1–2 mol%) were found to be more UV-active photocatalysts for the degradation of acetaldehyde than the degradation by Degussa P25 and as-synthesized TiO2, the highest by the MgO–TiO2 mixed oxides of 1:50 ratio when comparisons were carried out among the samples prepared by the same method. Furthermore, the mixed oxides prepared by the aerogel method were found to be superior photocatalysts compared with the mixed oxides of equal ratio prepared by flame synthesis. This effect of insulator, MgO, on the photocatalytic activity of semiconductor, TiO2, was found to be interesting and can be applied for other applications as environmentally friendly materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE II.

Similar content being viewed by others

References

  1. A.E. Jacobsen: Titanium dioxide pigments. Ind. Eng. Chem. 41, 523 (1949).

    Article  CAS  Google Scholar 

  2. E. Pramauro, M. Vincenti, V. Augugliaro, and L. Palmisano: Photocatalytic degradation of monuron in aqueous TiO2 dispersions. Environ. Sci. Technol. 27, 1790 (1993).

    Article  CAS  Google Scholar 

  3. Y. Zhang, J.C. Crittenden, D.W. Hand, and D.L. Perram: Fixed-bed photocatalysts for solar decontamination of water. Environ. Sci. Technol. 28, 435 (1994).

    Article  CAS  Google Scholar 

  4. J. Liu, Y. Hu, F. Gu, and C. Li: Flame synthesis of ball-in-shell structured TiO2 nanospheres. Ind. Eng. Chem. Res. 48, 735 (2009).

    Article  CAS  Google Scholar 

  5. K.T. Lim, H.S. Hwang, W. Ryoo, and K.P. Johnston: Synthesis of TiO2 nanoparticles utilizing hydrated reverse micelles in CO2. Langmuir 20, 2466 (2004).

    Article  CAS  Google Scholar 

  6. S.M. Liu, L.M. Gan, L.H. Liu, W.D. Zhang, and H.C. Zeng: Synthesis of single-crystalline TiO2 nanotubes. Chem. Mater. 14, 1391 (2002).

    Article  CAS  Google Scholar 

  7. M. Zhang, Y. Bando, and K. Wada: Sol-gel template preparation of TiO2 nanotubes and nanorods. J. Mater. Sci. Lett. 20, 167 (2001).

    Article  CAS  Google Scholar 

  8. C.A. Grimes: Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem. 17, 1451 (2007).

    Article  CAS  Google Scholar 

  9. H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, and S. Yanagida: Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. J. Mater. Chem. 11, 1694 (2001).

    Article  CAS  Google Scholar 

  10. A.V. Murugan, V. Samuel, and V. Ravi: Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method. Mater. Lett. 60, 479 (2006).

    Article  CAS  Google Scholar 

  11. A. Goossens, E.L. Maloney, and J. Schoonman: Gas-phase synthesis of nanostructured anatase TiO2. Chem. Vap. Deposition 4, 109 (1998).

    Article  CAS  Google Scholar 

  12. T. Ohno, K. Takieda, S. Higashida, and M. Matsumura: Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal., A 244, 383 (2003).

    Article  CAS  Google Scholar 

  13. T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii, and S. Ito: A patterned TiO2 (anatase)/TiO2 (rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angew. Chem. Int. Ed. 114, 2935 (2002).

    Article  Google Scholar 

  14. T. Ohno, K. Surukawa, and M. Matsumura: Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J. Phys. Chem. B 105, 2417 (2001).

    Article  CAS  Google Scholar 

  15. Q. Sun and Y. Xu: Evaluating intrinsic photocatalytic activities of anatase and rutile TiO2 for organic degradation in water. J. Phys. Chem. C 114, 18911(2010).

    Article  CAS  Google Scholar 

  16. T. Ohno, K. Sarukawa, and M. Matsumura: Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reaction. New J. Chem. 26, 1167 (2002).

    Article  CAS  Google Scholar 

  17. O.K. Varghese, M. Paulose, T.J. LaTempa, and C.A. Grimes: High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731 (2009).

    Article  CAS  Google Scholar 

  18. D.B. Hamal and K.J. Klabunde: Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. J. Colloid Interface Sci. 311, 514 (2007).

    Article  CAS  Google Scholar 

  19. A.D. Paola, E.G. Lopez, S. Ikeda, G. Marci, B. Ohtani, and L. Palmisano: Photocatalytic degradation of organic compounds in aqueous systems by transition metal-doped polycrystalline TiO2. Catal. Today 75, 87 (2002).

    Article  Google Scholar 

  20. J.C. Bailor, H.J. Emeléus, R. Nyholm, and A.F. Trotman-Dikenson: Comprehensive Inorganic Chemistry, 1st ed. (Compendium Publishers, Elmsford, NY, 1, 1973).

  21. J. Zhan, Y. Bando, J. Hu, and D. Golberg: Bulk synthesis of single-crystalline magnesium oxide nanotubes. Inorg. Chem. 43, 2462 (2004).

    Article  CAS  Google Scholar 

  22. R. Richards, R.S. Mulukutla, I. Mishakov, V. Chesnokov, A. Volodin, V. Zaikovski, N. Sun, and K.J. Klabunde: Nanocrystalline ultrahigh surface area magnesium oxide as a selective base catalyst. Scr. Mater. 44, 1663–1666 (2001).

    Article  CAS  Google Scholar 

  23. R.M. Narske, K.J. Klabunde, and S. Fultz: Solvent effect on the heterogeneous adsorption and reaction of (2-chloroethyl )ethyl sulfide on nanocrystalline magnesium oxide. Langmuir 18, 4819 (2002).

    Article  CAS  Google Scholar 

  24. R. Richards, W. Li, S. Decker, C. Davidson, O. Koper, V. Zaikovski, A. Volodin, T. Rieker, and K.J. Klabunde: Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials. J. Am. Chem. Soc. 122, 4921 (2000).

    Article  CAS  Google Scholar 

  25. F. Mohandes, F. Davar, and M. Salavati-Niasari: Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. J. Phys. Chem. Solids 71, 1623 (2010).

    Article  CAS  Google Scholar 

  26. M. Sharma and P. Jeevanandam: Synthesis of magnesium oxide particles with stacks of plates morphology. J. Alloys Compd. 509, 7881 (2011).

    Article  CAS  Google Scholar 

  27. T. Lopez, I. Garcia-Cruz, and R. Gomez: Synthesis of magnesium oxide by the sol-gel method: Effect of the pH on the surface hydroxylation. J. Catal. 127, 75 (1991).

    Article  CAS  Google Scholar 

  28. Y.X. Li and K.J. Klabunde: Nanoscale metal oxide particles as chemical regents. Destructive adsorption of a chemical simulant, dimethyl methyl phosophonate, on heat-treated magnesium oxide. Langmuir 7, 1388 (1991).

    Article  CAS  Google Scholar 

  29. J.V. Stark, D.G. Park, I. Lagadic, and K.J. Klabunde: Nanoscale metal oxide particles/clusters as chemical reagents. Unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases (sulfur dioxide and carbon dioxide) and pressure dependence. Chem. Mater. 8, 1904 (1996).

    Article  CAS  Google Scholar 

  30. G. Duan, X. Yang, J. Chen, G. Huang, L. Lu, and X. Wang: The catalytic effect of nanosized MgO on the decomposition of ammonium perchloride. Powder Technol. 172, 27 (2007).

    Article  CAS  Google Scholar 

  31. F. Chen, J. Zhao, and H. Hidaka: Highly selective deethylation of rhodamin B: Adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. Int. J. Photoenergy 5, 209 (2003).

    Article  Google Scholar 

  32. Y. Hu, C. Li, F. Gu, and Y. Zhao: Facile flame synthesis and photoluminescent properties of core/shell TiO2/SiO2 nanoparticles. J. Alloys Compd. 432, L5 (2007).

    Article  CAS  Google Scholar 

  33. J. Fang, X. Bi, D. Si, Z. Jiang, and W. Huang: Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Appl. Surf. Sci. 253, 8952 (2007).

    Article  CAS  Google Scholar 

  34. D. Das, H.K. Mishra, K.M. Parida, and A.K. Dalai: Preparation, physicochemical characterization and catalytic activity of sulfated ZrO2–TiO2 mixed oxides. J. Mol. Catal. A: Chem. 189, 271 (2002).

    Article  CAS  Google Scholar 

  35. B. Pal, M. Sharon, and G. Nogami: Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties. Mater. Chem. Phys. 59, 254 (1999).

    Article  CAS  Google Scholar 

  36. J. Lin and J.C. Yu: An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air. J. Photochem. Photobiol., A 116, 63 (1998).

    Article  CAS  Google Scholar 

  37. J.R. Osman, J.A. Crayston, A. Pratt, and D.T. Richens: Sol-gel processing of IrO2–TiO2 mixed metal oxides based on an iridium acetate precursor. J. Sol-Gel Sci. Technol. 46, 126 (2008).

    Article  CAS  Google Scholar 

  38. Y.S. Jung, K.H. Kim, T.Y. Jang, Y. Tak, and S.H. Baeck: Enhancement of photocatalytic properties of Cr2O3-TiO2 mixed oxides prepared by sol-gel method. Curr. Appl. Phys. 11, 358 (2011).

    Article  Google Scholar 

  39. S. Barison, S. Daolio, M. Fabrizio, and A.D. Battisti: Surface chemistry study of RuO2/IrO2/TiO2 mixed-oxide electrodes. Rapid Commun. Mass Spectrom. 18, 278 (2004).

    Article  CAS  Google Scholar 

  40. B.M. Reddy, I. Ganesh, and A. Khan: Preparation and characterization of In2O3–TiO2 and V2O5/In2O3–TiO2 composite oxides for catalytic applications. Appl. Catal., A 248, 169 (2003).

    Article  CAS  Google Scholar 

  41. B. Julian-Lopez, M. Martos, N. Ulldemolins, J.A. Odriozola, E. Cordoncillo, and P. Escribano: Self-assembling of Er2O3–TiO2 mixed oxide nanoplatelets by template-free solvothermal route. Chem. Eur. J. 15, 12426 (2009).

    Article  CAS  Google Scholar 

  42. J.R. Osman, J.A. Crayston, A. Pratt, and D.T. Ritcher: RuO2–TiO2 mixed oxides prepared by hydrolysis of metal alkoxides. Mater. Chem. Phys. 110, 256 (2008).

    Article  CAS  Google Scholar 

  43. L.R. Hou, C.Z. Yuan, and Y. Peng: Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composite. J. Hazard. Mater. 139, 310 (2007).

    Article  CAS  Google Scholar 

  44. J. Bandara and U.W. Pradeep: Tuning of the flat-band potentials of nanocrystalline TiO2 and SnO2 particles with an outer-shell MgO layer. Thin Solid Films 517, 952 (2008).

    Article  CAS  Google Scholar 

  45. K.T. Ranjit, I. Martyanov, D. Demydov, S. Uma, S. Rodrigues, and K.J. Klabunde: A review of the chemical manipulation of nanomaterials using solvent: Gelation-dependent structures. J. Sol-Gel Sci. Technol. 40, 335 (2006).

    Article  CAS  Google Scholar 

  46. W. Wei, H. Li, S. Chen, C. Yuan, and Q. Yuan: One step synthesis of ZnO–MgO core-sheath structures. Cryst. Res. Technol. 44, 861 (2009).

    Article  CAS  Google Scholar 

  47. M.A. Aramendia, V. Borau, C. Jimenez, J.M. Marinas, A. Porras, and F.J. Urbano: Synthesis and characterization of MgO–B2O3 mixed oxides prepared by coprecipitation; selective dehydrogenation of propan-2-ol. J. Mater. Chem. 9, 819 (1999).

    Article  CAS  Google Scholar 

  48. B.M. Reddy, M.V. Kumar, and K.J. Ratnam: Selective oxidation of p-methoxytoluene p-methoxybenzaldehyde over V2O5/CaO–MgO catalysts. Appl.Catal., A 181, 77 (1999).

    Article  CAS  Google Scholar 

  49. S. Qiujie, L. Ning, and L. Yi: Preparation of MgO-supported Cu2O catalyst and its catalytic properties for cyclohexanol dehydrogenation. Chin. J. Catal. 28, 57 (2007).

    Article  Google Scholar 

  50. M.E. Martin, R.M. Narske, and K.J. Klabunde: Mesoporous metal oxides formed by aggregation of nanocrystal. Behavior of aluminum oxide and mixtures with magnesium oxide in destructive adsorption of the chemical warfare surrogate 2-chloroethylethyl sulfide. Microporous Mesoporous Mater. 83, 47 (2005).

    Article  CAS  Google Scholar 

  51. M.B. Gawande, P.S. Branco, K. Parghi, J.J. Shrikhande, R.K. Pandey, C.A.A. Ghumman, N. Bundaleski, O.M.N.D. Teodoro, and R.V. Jayaram: Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications. Catal. Sci. Technol. 1, 1653 (2011).

    Article  CAS  Google Scholar 

  52. E.V. Ilian, I.V. Mishakov, A.A. Vedyagin, A.F. Bedilo, and K.J. Klabunde: Synthesis of nanocrystalline VOx/MgO aerogel and their application for destructive adsorption of CF2Cl2. NSTI-Nanotech. 1, 452 (2010).

    Google Scholar 

  53. H. Abimanyu, B.S. Ahn, C.S. Kim, and K.S. Yoo: Preparation and characterization of MgO–CeO2 mixed oxide catalysts by modified coprecipitation using ionic liquids for dimethyl carbonate synthesis. Ind. Eng. Chem. Res. 46, 7936 (2007).

    Article  CAS  Google Scholar 

  54. M.E. Llanos, T. Lopez, and R. Gomez: Determination of surface homogeneity of MgO–SiO2 sol-gel mixed oxides by means of CO2 and ammonia thermodesorption. Langmuir 13, 974 (1997).

    Article  CAS  Google Scholar 

  55. C.L. Carnes, P.N. Kapoor, K.J. Klabunde, and J. Bonevich: Synthesis, characterization, and adsorption studies of nanocrystalline aluminum oxide and a bimetallic nanocrystalline aluminum oxide/magnesium oxide. Chem. Mater. 14, 2922 (2002).

    Article  CAS  Google Scholar 

  56. H. Sieger, J. Suffner, H. Hahn, A.R. Raju, and G. Miehe: Thermal stability of nanocrystalline Sm2O3 and Sm2O3-MgO. J. Am. Ceram. Soc. 89, 979 (2006).

    Article  CAS  Google Scholar 

  57. M.A. Aramendia, V. Borau, C. Jimenez, A. Marinas, J.M. Marinas, J.A. Navio, J.R. Ruiz, and F.J. Urbano: Synthesis and textural-structural characterization of magnesia, magnesia-titania, and magnesia-zirconia catalysts. Colloids Surf., A 234, 17 (2004).

    Article  CAS  Google Scholar 

  58. H.S. Jung, J.K. Lee, M. Nastasi, S.W. Lee, J.Y. Kim, J.S. Park, K.S. Hong, and H. Shin: Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir 21, 10332 (2005).

    Article  CAS  Google Scholar 

  59. N. Stubicar, A. Tonejc, and M. Stubicar: Microstructural evolution of some MgO–TiO2 and MgO–Al2O3 powder mixtures during high-energy ball milling and post-annealing studied by x-ray diffraction. Alloys Compd. 370, 296 (2004).

    Article  CAS  Google Scholar 

  60. D. Osabe, H. Seyama, and K. Maki: Evaluation of crystallinity in TiO2 films with mixed structures grown on MgO (001) substrates by argon-ion beam sputtering based on infrared reflection-absorption spectra. Appl. Opt. 41, 739 (2001).

    Article  Google Scholar 

  61. J. Bernard, F. Belnou, D. Houidvet, and J.M. Haussonne: Synthesis of pure MgTiO3 by optimizing mixing/grinding condition of MgO + TiO2 powders. J. Mater. Process. Technol. 199, 150 (2008).

    Article  CAS  Google Scholar 

  62. T. Lopez, J. Hernandez, R. Gomez, X. Bokhimi, J.L. Boldu, E. Munoz, O. Novaro, and A. Garcia-Ruiz: Synthesis and characterization of TiO2–MgO mixed oxides prepared by the sol-gel method. Langmuir 15, 5689 (1999).

    Article  CAS  Google Scholar 

  63. J. Bandara, C.C. Hadapangoda, and W.G. Jayasekera: TiO2/MgO composite photocatalyst: The role of MgO in photoinduced charge carrier separation. Appl. Catal., B 50, 83 (2004).

    Article  CAS  Google Scholar 

  64. Z. Wen, X. Yu, S.T. Tu, J. Yan, and E. Dahlquist: Biodiesel production from waste cooking oil catalyzed by TiO2–MgO mixed oxides. Bioresour. Technol. 101, 9570 (2010).

    Article  CAS  Google Scholar 

  65. T. Lopez, J. Hernandez-Ventura, D.H. Aguilar, and P. Quintana: Thermal phase stability and catalytic properties of nanostructured TiO2-MgO sol-gel mixed oxides. J. Nanosci. Nanotechnol. 8, 6608 (2008).

    Article  CAS  Google Scholar 

  66. S. Utamapanya, K.J. Klabunde, and J.R. Schlup: Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chem. Mater. 3, 175 (1991).

    Article  CAS  Google Scholar 

  67. H.K. Kammler, L. Mädler, and S.E. Pratsinis: Flame synthesis of nanoparticles. Chem. Eng. Technol. 24, 583 (2001).

    Article  CAS  Google Scholar 

  68. G.W. Jones, B. Lewis, and H. Seaman: The flame temperature of methane-oxygen, methane-hydrogen and methane-acetylene with air. J. Am. Chem. Soc. 53, 3992 (1931).

    Article  CAS  Google Scholar 

  69. D. Urzica and E. Gutheil: Structure of laminar methane/nitrogen/oxygen, methane/oxygen and methane/liquid oxygen counterflow flames for cryogenic conditions and elevated pressures. Z. Phys. Chem. 223, 651, (2009).

    Article  CAS  Google Scholar 

  70. H.J. Fissan: Temperature distribution in open oxygen air methane-oxygen flame. Combust. Flame 17, 355 (1971).

    Article  CAS  Google Scholar 

  71. K.M. Shrestha, C.M. Sorensen, and K.J. Klabunde: Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials at near infrared region. J. Phys. Chem. C 114, 14368 (2010).

    Article  CAS  Google Scholar 

  72. A.W. Czanderna, C.N.R. Rao, and J.M. Honig: The anatase-rutile transition part 1.— Kinetics of the transformation of pure anatase. Trans. Faraday Soc. 54, 1069 (1958)

    Article  CAS  Google Scholar 

  73. J.S.J. Hargreaves, G.J. Hutchings, R.W. Joyner, and C.J. Kiely: The relationship between catalysts morphology and performance in oxidative coupling of methane. J. Catal. 135, 576 (1992).

    Article  CAS  Google Scholar 

  74. M. Che and A.J. Tench: Characterization and reactivity of molecular oxygen species on oxide surfaces. Adv. Catal. 32, 1 (1983).

    CAS  Google Scholar 

  75. L. Zhang, H. Ji, Y. Lei, and W. Xiao: Oxygen adsorption on anatase surfaces and edges. Appl. Surf. Sci. 257, 8402 (2011).

    Article  CAS  Google Scholar 

  76. M. Anpo, Y. Yamada, and Y. Kubokawa: Photoluminescence and photocatalytic activity of MgO powders with coordinatively unsaturated surface ions. J. Chem. Soc. Commun. 50, 714 (1986).

    Article  Google Scholar 

  77. G. Pacchioni and A.M. Ferrari: Surface reactivity of MgO oxygen vacancies. Catal. Today 50, 533(1999).

    Article  CAS  Google Scholar 

  78. W.R. Smith and D.G. Ford: Adsorption studies on heterogeneous titania and homogeneous carbon surfaces. J. Phys. Chem. 69, 3587 (1965).

    Article  CAS  Google Scholar 

  79. Z. Ding, G.Q. Lu, and P.F. Greenfield: Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J. Phys. Chem. B 104, 4815 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The partial financial support of the Department of Energy (DF-FGO2-10ER16202) and KSU Targeted Excellence are acknowledged with gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Klabunde.

Appendix

Appendix

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting u]http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrestha, K.M., Sorensen, C.M. & Klabunde, K.J. MgO–TiO2 mixed oxide nanoparticles: Comparison of flame synthesis versus aerogel method; characterization, and photocatalytic activities. Journal of Materials Research 28, 431–439 (2013). https://doi.org/10.1557/jmr.2012.288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.288

Navigation