Skip to main content
Log in

Three-dimensionally ordered macroporous TiO2 electrodes: Fabrication of inverse TiO2 opals for pore-size-dependent characterization

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The increased use of viscous electrolytes in dye-sensitized solar cells (DSSCs) has revitalized the interest in three-dimensionally ordered macroporous (3DOM) structures as potential electrodes. The simplest approach to a 3DOM structure, such as inverse opals, is colloidal assembly followed by precursor infiltration and calcination. However, current assembly methods are often optimized for very narrow particle size ranges due to the colloidal forces specific to the method used. Using five particle sizes, ranging from 0.5 to 10 μm, we have studied the particle-size dependence of six commonly used colloidal assembly methods and its effect on the resulting inverse opal structure using scanning electron microscopy and Fast Fourier Transforms. Our results indicate a clear correlation between particle size and colloidal assembly method. The information provided by our study will enable systematic studies on inverse opal TiO2 electrodes with various pore sizes, in which the influence of the inverse opal preparation methods used is minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. D.L. Douglas and J.R. Birk: Secondary batteries for electrical energy storage. Annu. Rev. Energy 5(1), 61–88 (1980).

    Article  CAS  Google Scholar 

  2. S. Srinivasan, R. Mosdale, P. Stevens, and C. Yang: Fuel cells: Reaching the era of clean and efficient power generation in the twenty-first century. Annu. Rev. Energy Env. 24(1), 281–328 (1999).

    Article  Google Scholar 

  3. M. Grätzel: Dye-sensitized solar cells. J. Photochem. Photobiol., C 4, 145 (2003).

    Article  Google Scholar 

  4. B. O’Regan and M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).

    Article  Google Scholar 

  5. Y.M. Cao, Y. Bai, Q.J. Yu, Y.M. Cheng, S. Liu, D. Shi, F.F. Gao, and P. Wang: Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(Hexylthio) thiophene conjugated bipyridine. J. Phys. Chem. C 113, 6290 (2009).

    Article  CAS  Google Scholar 

  6. J.H. Yum, E. Baranoff, S. Wenger, M.K. Nazeeruddin, and M. Grätzel: Panchromatic engineering for dye-sensitized solar cells. Energy Environ. Sci. 4, 842 (2011).

    Article  CAS  Google Scholar 

  7. J. Bisquert and V.S. Vikhrenko: Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. J. Phys. Chem. B 108(7), 2313–2322 (2004).

    Article  CAS  Google Scholar 

  8. E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo: Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J. Phys. Chem. B 110(33), 16159–16161 (2006).

    Article  CAS  Google Scholar 

  9. S.M. Feldt, G. Wang, G. Boschloo, and A. Hagfeldt: Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couple. J. Phys. Chem. C 115(43), 21500 (2011).

    Article  CAS  Google Scholar 

  10. M.K. Wang, J.Y. Liu, N.L. Cevey-Ha, S.J. Moon, P. Liska, R. Humphrey-Baker, J.E. Moser, C. Grätzel, P. Wang, S.M. Zakeeruddin, and M. Grätzel: High efficiency solid-state sensitized heterojunction photovoltaic device. Nano Today 5, 169 (2010).

    Article  CAS  Google Scholar 

  11. CRC Handbook of Chemistry and Physics, D.R. Lide, ed; CRC Press LLC: New York, 1998.

    Google Scholar 

  12. Ultrapure(R) Ethylene Carbonate. Huntsman Tech. Bull. (2007).

  13. A. Mihi, M.E. Calvo, J.A. Anta, and H. Miguez: Spectral response of opal-based dye-sensitized solar cells. J. Phys. Chem. C 112(1), 13–17 (2007).

    Article  Google Scholar 

  14. A. Stein: Sphere templating methods for periodic porous solids. Microporous Mesoporous Mater. 45, 227–239 (2001).

    Article  Google Scholar 

  15. O.D. Velev and E.W. Kaler: Structured porous materials via colloidal crystal templating: From inorganic oxides to metals. Adv. Mater. 12(7), 531–534 (2000).

    Article  CAS  Google Scholar 

  16. Y. Xia, B. Gates, Y. Yin, and Y. Lu: Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 12(10), 693–713 (2000).

    Article  CAS  Google Scholar 

  17. V.L. Colvin: From opals to optics: Colloidal photonic crystals. MRS Bull. 26(8), 637–641 (2001).

    Article  CAS  Google Scholar 

  18. F. Meseguer, A. Blanco, H. Miguez, F. Garcia-Santamaria, M. Ibisate, and C. Lopez: Synthesis of inverse opals. Colloids Surf., A 202, 281–290 (2002).

    Article  CAS  Google Scholar 

  19. S.I. Bozhko, A.N. Chaika, G.A. Emelchenko, V.M. Masalov, A.M. Ionov, A.N. Gruzintsev, G.M. Mikhailov, and B.K. Medvedev: Mono- and multilayered opalline superlattices: Application to nanotechnology of 2D ordered array of nanoobjects and 3D metalattices. Appl. Surf. Sci. 234(1–4), 93–101 (2004).

    Article  CAS  Google Scholar 

  20. M.C. Goncalves, J. Bras, and R.M. Almeida: Process optimization of sol-gel derived colloidal photonic crystals. J. Sol-Gel Sci. Technol. 42, 135–143 (2007).

    Article  CAS  Google Scholar 

  21. G.I.N. Waterhouse and M.R. Waterland: Opal and inverse opal photonic crystals: Fabrication and characterization. Polyhedron 26, 356–368 (2007).

    Article  CAS  Google Scholar 

  22. R.L. Whitmore: The sedimentation of suspensions of spheres. Br. J. Appl. Phys. 6, 239–245 (1955).

    Article  Google Scholar 

  23. A.D. Maude and R.L. Whitmore: A generalized theory of sedimentation. Br. J. Appl. Phys. 9, 477–482 (1958).

    Article  CAS  Google Scholar 

  24. R. Mayoral, J. Requena, J.S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco: 3D long-range ordering in SiO2 submicrometer sphere sintered superstructure. Adv. Mater. 9(3), 257–260 (1997).

    Article  CAS  Google Scholar 

  25. Y. Liu, S. Wang, J.W. Lee, and N.A. Kotov: A floating self-assembly route to colloidal crystal templates for 3D cell scaffolds. Chem. Mater. 17(20), 4918–4924 (2005).

    Article  CAS  Google Scholar 

  26. A.L. Rogach, N.A. Kotov, D.S. Koktysh, J.W. Ostrander, and G.A. Ragoisha: Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A technique for rapid production of high quality opals. Chem. Mater. 12(9), 2721–2726 (2000).

    Article  CAS  Google Scholar 

  27. B.G. Prevo and O.D. Velev: Controlled, rapid deposition of structured coating from micro- and nanoparticle suspensions. Langmuir 20, 2099–2107 (2004).

    Article  CAS  Google Scholar 

  28. P. Jiang, J.F. Bertone, K.S. Hwang, and V.L. Colvin: Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11(8), 2132–2140 (1999).

    Article  CAS  Google Scholar 

  29. S. Wong, V. Kitaev, and G. Ozin: Colloidal crystal films: Advances in universality and perfection. J. Am. Chem. Soc. 125, 15589–15598 (2003).

    Article  CAS  Google Scholar 

  30. R.G. Shimmin, A.J. DiMauro, and P.V. Braun: Slow vertical deposition of colloidal crystals: A Langmuir-Blodgett process? Langmuir 22, 6507–6513 (2006).

    Article  CAS  Google Scholar 

  31. B. Hatton, L. Mishchenko, S. Davis, K.H. Sandhage, and J. Aizenberg: Assembly of large-area, highly ordered, crack-free inverse opal films. PNAS 107(23), 10354–10359 (2010).

    Article  CAS  Google Scholar 

  32. P. Kumnorkaew and J.F. Gilchrist: Effect of nanoparticle concentration on the convective deposition of binary suspensions. Langmuir 25(11), 6070–6075 (2009).

    Article  CAS  Google Scholar 

  33. C.B. Murray, C.R. Kagan, and M.G. Bawendi: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Res. 30, (2000). pp. 545–610.

  34. E. Scolan and C. Sanchez: Synthesis and characterization of surface-protected nanocrystalline titania particles. Chem. Mater. 10, 3217–3223 (1998).

    Article  CAS  Google Scholar 

  35. W. Liu, B. Zou, J. Zhao, and H. Cui: Optimizing sol-gel infiltration for the fabrication of high-quality titania inverse opal and its photocatalytic activity. Thin Solid Films 518(17), 4923–4927 (2010).

    Article  CAS  Google Scholar 

  36. A. Imhof and D.J. Pine: Ordered macroporous materials by emulsion templating. Nature 389, 948 (1997).

    Article  CAS  Google Scholar 

  37. B.T. Holland, C.F. Blanford, and A. Stein: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281, 538 (1998).

    Article  CAS  Google Scholar 

  38. J.E.G.J. Wijnhoven and W.L. Vos: Preparation of photonic crystals made of air spheres in titania. Science 281, 802 (1998).

    Article  CAS  Google Scholar 

  39. C.F. Blanford, C.B. Carter, and A. Stein: A method for determining void arrangements in inverse opals. J. Microsc. 216(3), 263–287 (2004).

    Article  CAS  Google Scholar 

  40. E. Palacios-Lidon, B.H. Juárez, E. Castillo-Martinez, and C. Lópex: Optical and morphological study of disorder in opals. J. Appl. Phys. 97, 063502 (2005).

    Article  Google Scholar 

  41. A. Sinitskii, V. Abramova, T. Laptinskaya, and Y.D. Tretyakov: Domain mapping of inverse photonic crystals by laser diffraction. Phys. Lett. A 366, 516–522 (2007).

    Article  CAS  Google Scholar 

  42. O. Vickreva, O. Kalinina, and E. Kumacheva: Colloid crystal growth under oscillatory shear. Adv. Mater. 12(2), 110–112 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from PSC-CUNY Awards (Nos. 69038-0038, -0039, and -0040) and an Electricity Storage Research Seed Grant from the CUNY Energy Institute. SM acknowledges NSF IGERT (No. 0221589) and CENSES (NSF No. 0833180) for graduate fellowships. Prof. Raymond Tu is acknowledged for his helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Kretzschmar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, S.S., Ma, S. & Kretzschmar, I. Three-dimensionally ordered macroporous TiO2 electrodes: Fabrication of inverse TiO2 opals for pore-size-dependent characterization. Journal of Materials Research 28, 369–377 (2013). https://doi.org/10.1557/jmr.2012.311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.311

Navigation