Skip to main content
Log in

Carbothermal synthesis of titanium oxycarbide as electrocatalyst support with high oxygen evolution reaction activity

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbothermal reduction of semiconducting TiO2 into highly conductive titanium oxycarbide (TiOxCy) was investigated. The thermally produced uniform carbon layer on TiO2 (Degussa P25) protects the TiO2 nanoparticles from sintering and, at the same time, supplies the carbon source for doping TiO2 with carbon. At low temperatures (e.g., 700 °C), carbon only substitutes part of the oxide and distorts the TiO2 lattice to form TiO2−xCx with only substitutional carbon. When the carbon-doped TiO2 is annealed at a higher temperature (1100 °C), x-ray diffraction and x-ray photoelectron spectroscopy results showed that TiOxCy, a solid solution of TiO and TiC, was formed, which displays different diffraction peaks and binding energies. It was shown that TiOxCy has much better oxygen revolution reaction activity than TiO2 or TiO2−xCx. Further studies showed that the TiOxCyobtained can be used as a support for metal electrocatalyst, leading to a bifunctional catalyst effective for both oxygen reduction and evolution reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. J. Newman and W. Tiedemann: Porous-electrode theory with battery applications. AIChE J. 21, 25 (1975).

    Article  CAS  Google Scholar 

  2. S. Litster and G. McLean: PEM fuel cell electrodes. J. Power Sources 130, 61 (2004).

    Article  CAS  Google Scholar 

  3. A.L. Dicks: The role of carbon in fuel cells. J. Power Sources 156, 128 (2006).

    Article  CAS  Google Scholar 

  4. X.L. Wang, H.M. Zhang, J.L. Zhang, H.F. Xu, Z.Q. Tian, J. Chen, H.X. Zhong, Y.M. Liang, and B.L. Yi: Micro-porous layer with composite carbon black for PEM fuel cells. Electrochim. Acta 51, 4909 (2006).

    Article  CAS  Google Scholar 

  5. S-W. Eom, C-W. Lee, M-S. Yun, and Y-K. Sun: The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes. Electrochim. Acta 52, 1592 (2006).

    Article  CAS  Google Scholar 

  6. T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, and P.G. Bruce: Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390 (2006).

    Article  CAS  Google Scholar 

  7. A. Débart, J. Bao, G. Armstrong, and P.G. Bruce: An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J. Power Sources 174, 1177 (2007).

    Article  CAS  Google Scholar 

  8. J. Willsau and J. Heitbaum: The influence of Pt-activation on the corrosion of carbon in gas diffusion electrodes—a DEMS study. J. Electroanal. Chem. 161, 93 (1984).

    Article  CAS  Google Scholar 

  9. S.K. Natarajan and J. Hamelin: Electrochemical durability of carbon nanostructures as catalyst support for PEMFCs. J. Electrochem. Soc. 156, B210 (2009).

    Article  CAS  Google Scholar 

  10. H. Song, X. Qiu, F. Li, W. Zhu, and L. Chen: Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support. Electrochem. Commun. 9, 1416 (2007).

    Article  CAS  Google Scholar 

  11. A. Bauer, K. Lee, C. Song, Y. Xie, J. Zhang, and R. Hui: Pt nanoparticles deposited on TiO2 based nanofibers: Electrochemical stability and oxygen reduction activity. J. Power Sources 195, 3105 (2010).

    Article  CAS  Google Scholar 

  12. R.E. Fuentes, J. Farell, and J.W. Weidner: Multimetallic electrocatalysts of Pt, Ru, and Ir supported on anatase and rutile TiO2 for oxygen evolution in an acid environment. Electrochem. Solid-State Lett. 14, E5 (2011).

    Article  CAS  Google Scholar 

  13. F.C. Walsh and R.G.A. Wills: The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes. Electrochim. Acta 55, 6342 (2010).

    Article  CAS  Google Scholar 

  14. X. Li, A.L. Zhu, W. Qu, H. Wang, R. Hui, L. Zhang, and J. Zhang: Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries. Electrochim. Acta 55, 5891 (2010).

    Article  CAS  Google Scholar 

  15. T. Ioroi, H. Senoh, S-I. Yamazaki, Z. Siroma, N. Fujiwara, and K. Yasuda: Stability of corrosion-resistant Magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials. J. Electrochem. Soc. 155, B321 (2008).

    Article  CAS  Google Scholar 

  16. W-Q. Han and X-L. Wang: Carbon-coated Magneli-phase TinO2n-1 nanobelts as anodes for Li-ion batteries and hybrid electrochemical cells. Appl. Phys. Lett. 97, 243104 (2010).

    Article  CAS  Google Scholar 

  17. T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, M. Toyoda, and M. Inagaki: Carbon coating of anatase-type TiO2 and photoactivity. J. Mater. Chem. 12, 1391 (2002).

    Article  CAS  Google Scholar 

  18. H. Irie, Y. Watanabe, and K. Hashimoto: Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett. 32, 772 (2003).

    Article  CAS  Google Scholar 

  19. Y. Choi, T. Umebayashi, and M. Yoshikawa: Fabrication and characterization of C-doped anatase TiO2 photocatalysts. J. Mater. Sci. 39, 1837 (2004).

    Article  CAS  Google Scholar 

  20. J.H. Park, S. Kim, and A.J. Bard: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24 (2005).

    Article  CAS  Google Scholar 

  21. C.A. Grimes and G.K. Mor: TiO2 Nanotube Arrays: Synthesis, Properties, and Applications (Springer Science, Germany, 2009).

    Book  Google Scholar 

  22. H.K. Kammler and S.E. Pratsinis: Carbon-coated titania nanostructured particles: Continuous, one-step flame-synthesis. J. Mater. Res. 18, 2670 (2003).

    Article  CAS  Google Scholar 

  23. Y. Choi, T. Umebayashi, S. Yamamoto, and S. Tanaka: Fabrication of TiO2 photocatalysts by oxidative annealing of TiC. J. Mater. Sci. Lett. 22, 1209 (2003).

    Article  CAS  Google Scholar 

  24. M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura, and M. Toyoda: Carbon coating of anatase-type TiO2 through their precipitation in PVA aqueous solution. Carbon 41, 2619 (2003).

    Article  CAS  Google Scholar 

  25. M. Inagaki, F. Kojin, B. Tryba, and M. Toyoda: Carbon-coated anatase: The role of the carbon layer for photocatalytic performance. Carbon 43, 1652 (2005).

    Article  CAS  Google Scholar 

  26. M. Toyoda, T. Yano, B. Tryba, S. Mozia, T. Tsumura, and M. Inagaki: Preparation of carbon-coated Magneli phases TinO2n-1 and their photocatalytic activity under visible light. Appl. Catal., B 88, 160 (2009).

    Article  CAS  Google Scholar 

  27. R. Hahn, F. Schmidt-Stein, J. Salonen, S. Thiemann, Y. Song, J. Kunze, V-P. Lehto, and P. Schmuki: Semimetallic TiO2 nanotubes. Angew. Chem. Int. Ed. 48, 7236 (2009).

    Article  CAS  Google Scholar 

  28. H.S. Kibombo and R.T. Koodali: Heterogeneous photocatalytic remediation of phenol by platinized titania–silica mixed oxides under solar-simulated conditions. J. Phys. Chem. C 115, 25568 (2011).

    Article  CAS  Google Scholar 

  29. J. Lee and W. Choi: Photocatalytic reactivity of surface platinized TiO2: Substrate specificity and the effect of Pt oxidation state. J. Phys. Chem. B 109, 7399 (2005).

    Article  CAS  Google Scholar 

  30. T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, and H. Takenaka: Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells. J. Electrochem. Soc. 147, 2018 (2000).

    Article  CAS  Google Scholar 

  31. S. Song, H. Zhang, X. Ma, Z-G. Shao, Y. Zhang, and B. Yi: Bifunctional oxygen electrode with corrosion-resistive gas diffusion layer for unitized regenerative fuel cell. Electrochem. Commun. 8, 399 (2006).

    Article  CAS  Google Scholar 

  32. Y. Xing: Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes. J. Phys. Chem. B 108, 19255 (2004).

    Article  CAS  Google Scholar 

  33. R. Koc and J.S. Folmer: Carbothermal synthesis of titanium carbide using ultrafine titania powders. J. Mater. Sci. 32, 3101 (1997).

    Article  CAS  Google Scholar 

  34. X. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).

    Article  CAS  Google Scholar 

  35. E.A. Reyes-Garcia, Y. Sun, K.R. Reyes-Gil, and D. Raftery: Solid-state NMR and EPR analysis of carbon-doped titanium dioxide photocatalysts (TiO2-xCx). Solid State Nucl. Magn. Reson. 35, 74 (2009).

    Article  CAS  Google Scholar 

  36. Y. Luo, S. Ge, Z. Jin, and J. Fisher: Formation of titanium carbide coating with micro-porous structure. Appl. Phys. A 98, 765 (2010).

    Article  CAS  Google Scholar 

  37. W. Göpel, G. Rocker, and R. Feierabend: Intrinsic defects of TiO2(110): Interaction with chemisorbed O2, H2, CO, and CO2. Phys. Rev. B 28, 3427 (1983).

    Article  Google Scholar 

  38. C. Di Valentin, G. Pacchioni, and A. Selloni: Theory of carbon doping of titanium dioxide. Chem. Mater. 17, 6656 (2005).

    Article  CAS  Google Scholar 

  39. K. Huang, K. Sasaki, R.R. Adzic, and Y. Xing: Increasing Pt oxygen reduction reaction activity and durability with carbon-doped TiO2 nanocoating catalyst support. J. Mater. Chem. 22, 16824–16832 (2012).

    Article  CAS  Google Scholar 

  40. J.J. Blackstock, C.L. Donley, W.F. Stickle, D.A.A. Ohlberg, J.J. Yang, D.R. Stewart, and R.S. Williams: Oxide and carbide formation at titanium/organic monolayer interfaces. J. Am. Chem. Soc. 130, 4041 (2008).

    Article  CAS  Google Scholar 

  41. C. Moreno-Castilla, F.J. Maldonado-Hódar, F. Carrasco-Marín, and E. Rodríguez-Castellón: Surface characteristics of titania/carbon composite aerogels. Langmuir 18, 2295 (2002).

    Article  CAS  Google Scholar 

  42. J. Nowotny, T. Bak, M.K. Nowotny, and L.R. Sheppard: TiO2 surface active sites for water splitting. J. Phys. Chem. B 110, 18492 (2006).

    Article  CAS  Google Scholar 

  43. M. Calatayud, A. Markovits, M. Menetrey, B. Mguig, and C. Minot: Adsorption on perfect and reduced surfaces of metal oxides. Catal. Today 85, 125 (2003).

    Article  CAS  Google Scholar 

  44. M. Menetrey, A. Markovits, and C. Minot: Reactivity of a reduced metal oxide surface: Hydrogen, water and carbon monoxide adsorption on oxygen defective rutile TiO2(110). Surf. Sci. 524, 49 (2003).

    Article  CAS  Google Scholar 

  45. J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, and Y. Shao-Horn: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383 (2011).

    Article  CAS  Google Scholar 

  46. Y. Xing, Y. Cai, M.B. Vukmirovic, W-P. Zhou, H. Karan, J.X. Wang, and R.R. Adzic: Enhancing oxygen reduction reaction activity via Pd−Au alloy sublayer mediation of Pt monolayer electrocatalysts. J. Phys. Chem. Lett. 1, 3238 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank partial financial support for this research from the U.S. Department of Energy ARPA-E Grant No. DE-AR0000066. We thank Dr. Eric Bohannan for XRD analysis, Mr. Brian Porter for XPS analysis, and Dr. Kai Song for taking TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangchuan Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K., Li, Y. & Xing, Y. Carbothermal synthesis of titanium oxycarbide as electrocatalyst support with high oxygen evolution reaction activity. Journal of Materials Research 28, 454–460 (2013). https://doi.org/10.1557/jmr.2012.353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.353

Navigation