Skip to main content
Log in

Thermal transport in 3D pillared SWCNT–graphene nanostructures

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present results of a molecular dynamics study using adaptive intermolecular reactive empirical bond order interatomic potential to analyze thermal transport in three-dimensional pillared single-walled carbon nanotube (SWCNT)–graphene superstructures comprised of unit cells with graphene floors and SWCNT pillars. The results indicate that in-plane as well as out-of-plane thermal conductivity in these superstructures can be tuned by varying the interpillar distance and/or the pillar height. The simulations also provide information on thermal interfacial resistance at the graphene–SWCNT junctions in both the in-plane and out-of-plane directions. Among the superstructures analyzed, the highest effective (based on the unit cell cross-sectional area) in-plane thermal conductivity was 40 W/(m K) with an out-of-plane thermal conductivity of 1.0 W/(m K) for unit cells with an interpillar distance Dx = 3.3 nm and pillar height Dz = 1.2 nm, while the highest out-of-plane thermal conductivity was 6.8 W/(m K) with an in-plane thermal conductivity of 6.4 W/(m K) with Dx = 2.1 nm and Dz= 4.2 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
TABLE I
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. S. Berber, Y.K. Kwon, and D. Tomanek: Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613 (2000).

    CAS  Google Scholar 

  2. C.H. Yu, L. Shi, Z. Yao, D.Y. Li, and A. Majumdar: Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5(9), 1842 (2005).

    CAS  Google Scholar 

  3. E. Pop, D. Mann, Q. Wang, K. Goodson, and H.J. Dai: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96 (2006).

    CAS  Google Scholar 

  4. J.W. Che, T. Cagin, and W.A. Goddard: Thermal conductivity of carbon nanotubes. Nanotechnology 11(2), 65 (2000).

    CAS  Google Scholar 

  5. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902 (2008).

    CAS  Google Scholar 

  6. J. Hu, X. Ruan, and Y.P. Chen: Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study. Nano Lett. 9(7), 2730 (2009).

    CAS  Google Scholar 

  7. W. Cai, A.L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R.S. Ruoff: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10(5), 1645 (2010).

    CAS  Google Scholar 

  8. K. Sun, M.A. Stroscio, and M. Dutta: Thermal conductivity of carbon nanotubes. J. Appl. Phys. 105(7), 074316 (2009).

    Google Scholar 

  9. V. Varshney, S. Patnaik, A. Roy, G. Froudakis, and B.L. Farmer: Modeling thermal transport in pillared-graphene architectures. ACS Nano 4(2), 1153 (2010).

    CAS  Google Scholar 

  10. G.C. Loh, E.H.T. Teo, and B.K. Tay: Interpillar phononics in pillared-graphene hybrid nanostructures. J. Appl. Phys. 110(8), 083502 (2011).

    Google Scholar 

  11. G.C. Loh, E.H.T. Teo, and B.K. Tay: Tuning the Kapitza resistance in pillared-graphene nanostructures. J. Appl. Phys. 111(1), 013515 (2012).

    Google Scholar 

  12. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, and F. Wei: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22(33), 3723 (2010).

    CAS  Google Scholar 

  13. F. Du, D.S. Yu, L.M. Dai, S. Ganguli, V. Varshney, and A.K. Roy: Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chem. Mater. 23(21), 4810 (2011).

    CAS  Google Scholar 

  14. C.B. Parker, A.S. Raut, B. Brown, B.R. Stoner, and J.T. Glass: Three-dimensional arrays of graphenated carbon nanotubes. J. Mater. Res. 27(7), 1046 (2012).

    CAS  Google Scholar 

  15. R.K. Paul, M. Ghazinejad, M. Penchev, J. Lin, M. Ozkan, and C.S. Ozkan: Synthesis of a pillared graphene nanostructure: A counterpart of three-dimensional carbon architectures. Small 6(20), 2309 (2010).

    CAS  Google Scholar 

  16. W.M. Zhang, P. Sherrell, A.I. Minett, J.M. Razal, and J. Chen: Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells. Energy Environ. Sci. 3(9), 1286 (2010).

    CAS  Google Scholar 

  17. G.K. Dimitrakakis, E. Tylianakis, and G.E. Froudakis: Pillared graphene: A new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 8(10), 3166 (2008).

    CAS  Google Scholar 

  18. V. Varshney, S.S. Patnaik, A.K. Roy, G. Froudakis, and B.L. Farmer: Modeling of thermal transport in pillared-graphene architectures. ACS Nano 4(2), 1153 (2010).

    CAS  Google Scholar 

  19. F. Müller-Plathe: A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106(14), 6082 (1997).

    Google Scholar 

  20. S.J. Stuart, A.B. Tutein, and J.A. Harrison: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112(14), 6472 (2000).

    CAS  Google Scholar 

  21. J. Gonzalez, F. Guinea, and J. Herrero: Propagating, evanescent, and localized states in carbon nanotube-graphene junctions. Phys. Rev. B. 79(16), 165434 (2009).

    Google Scholar 

  22. J. Gonzalez and J. Herrero: Graphene wormholes: A condensed matter illustration of Dirac fermions in curved space. Nucl. Phys. B. 825(3), 426 (2010).

    Google Scholar 

  23. S. Plimpton: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117(1), 1–19 (1995).

    CAS  Google Scholar 

  24. J.A. Izaguirre, D.P. Catarello, J.M. Wozniak, and R.D. Skeel: Langevin stabilization of molecular dynamics. J. Chem. Phys. 114(5), 2090 (2001).

    CAS  Google Scholar 

  25. A. Bagri, S.P. Kim, R.S. Ruoff, and V.B. Shenoy: Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 11(9), 3917 (2011).

    CAS  Google Scholar 

  26. P.K. Schelling, S.R. Phillpot, and P. Keblinski: Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B. 65(14), 144306 (2002).

    Google Scholar 

  27. P.G. Klemens: Theory of thermal conduction in thin ceramic films. Int. J. Thermophys. 22(1), 265 (2001).

    CAS  Google Scholar 

  28. A.J.H. McGaughey and A. Jain: Nanostructure thermal conductivity prediction by Monte Carlo sampling of phonon free paths. Appl. Phys. Lett. 100(6), 061911 (2012).

    Google Scholar 

  29. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 151911 (2008).

    Google Scholar 

  30. J.A. Thomas, R.M. Iutzi, and A.J.H. McGaughey: Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes. Phys. Rev. B. 81(4), 045413 (2010).

    Google Scholar 

  31. D. Donadio and G. Galli: Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation. Phys. Rev. Lett. 99(25), 255502 (2007).

    Google Scholar 

  32. S. Maruyama: A molecular dynamics simulation of heat conduction in finite length SWNTs. Physica B 323(1–4), 193 (2002).

    CAS  Google Scholar 

  33. M.A. Osman and D. Srivastava: Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 12(1), 21 (2001).

    CAS  Google Scholar 

  34. C.W. Padgett and D.W. Brenner: Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes. Nano Lett. 4(6), 1051 (2004).

    CAS  Google Scholar 

  35. L. Lindsay and D.A. Broido: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B. 81(20), 205441 (2010).

    Google Scholar 

  36. W.J. Evans, L. Hu, and P. Keblinski: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 96(20), 203112 (2010).

    Google Scholar 

  37. L.A. Jauregui, Y. Yue, A.N. Sidorov, J. Hu, Q. Yu, G. Lopez, R. Jalilian, D.K. Benjamin, D.A. Delkd, W. Wu, Z. Liu, X. Wang, Z. Jiang, X. Ruan, J. Bao, S.S. Pei, and Y.P. Chen: Thermal transport in graphene nanostructures: Experiments and simulations, in ECS Transactions: 217th ECS Meeting, edited by Z.K.P. Srinivasan, Y. Obeng, S. De-Gendt, and D. Misra (The Electrochemical Society, 2010); p. 73.

    Google Scholar 

  38. R. Murali, Y.X. Yang, K. Brenner, T. Beck, and J.D. Meindl: Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94(24), 243114 (2009).

    Google Scholar 

  39. J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff, and L. Shi: Two-dimensional phonon transport in supported graphene. Science 328(5975), 213 (2010). Vancouver, Canada.

    CAS  Google Scholar 

  40. J. Tersoff: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B. 39(8), 5566 (1989).

    CAS  Google Scholar 

  41. D. Donadio and G. Galli: Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation. Phys. Rev. Lett. 103(14), 149901 (2009).

    Google Scholar 

  42. E. Munoz, J.X. Lu, and B.I. Yakobson: Ballistic thermal conductance of graphene ribbons. Nano Lett. 10(5), 1652 (2010).

    CAS  Google Scholar 

  43. K. Saito, J. Nakamura, and A. Natori: Ballistic thermal conductance of a graphene sheet. Phys. Rev. B. 76(11), 115409 (2007).

    Google Scholar 

  44. N. Mingo and D.A. Broido: Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 95(9), 096105 (2005).

    CAS  Google Scholar 

  45. J. Lee, V. Varshney, J.S. Brown, A.K. Roy and B.L. Farmer: Single mode phonon scattering at carbon nanotube-graphene junction in pillared graphene structure. Appl. Phys. Lett. 100(18), 183111 (2012).

    Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the support of the Air Force Office of Scientific Research (AFOSR) MURI Grant No. FA9550-12-1-0037 (Program Manager: Dr. Joycelyn Harrison) for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Prakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J., Prakash, V. Thermal transport in 3D pillared SWCNT–graphene nanostructures. Journal of Materials Research 28, 940–951 (2013). https://doi.org/10.1557/jmr.2012.395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.395

Navigation