Skip to main content
Log in

Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene fluoride)/polyacrylonitrile blends

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, crystal orientation and polymorphism formation in electrospun poly(vinylidene fluoride) (PVDF)/polyacrylonitrile (PAN) blend fibers after melt-recrystallization were studied. To achieve uniform alignment of electrospun fibers, mechanical stretching was applied to the as-spun nonwoven fibers at 110 °C. Pure ferroelectric β-PVDF crystals in the PAN matrix were achieved, and both polar β-PVDF and polar PAN crystals oriented with their chain axes parallel to the fiber axes. After melt-recrystallization of PVDF, a significant amount of ferroelectric β crystals was retained in addition to the formation of nonpolar α crystals. A polarized Fourier transform infrared study showed that the degree of orientation of ferroelectric β-PVDF crystals was higher than that of nonpolar α crystals, suggesting that the β-PVDF crystals should form at the PVDF/PAN interfaces because of strong dipolar and hydrogen bonding interactions between vinylidene fluoride and acrylonitrile units. The nonpolar α-PVDF crystals should form in the center of PVDF domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
TABLE I.
FIG. 9.

Similar content being viewed by others

References

  1. H.S. Nalwa: Ferroelectric Polymers: Chemistry, Physics, and Applications (Marcel Dekker, New York, 1995).

    Google Scholar 

  2. S. Ducharme, T.J. Reece, C.M. Othon, and R.K. Rannow: Ferroelectric polymer Langmuir-Blodgett films for nonvolatile memory applications. IEEE Trans. Device Mater. Reliab. 5, 720 (2005).

    CAS  Google Scholar 

  3. Q.D. Ling, D.J. Liaw, C. Zhu, D.S.H. Chan, E.T. Kang, and K.G. Neoh: Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci. 33, 917 (2008).

    CAS  Google Scholar 

  4. Z. Hu, M. Tian, B. Nysten, and A.M. Jonas: Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat. Mater. 8, 62 (2009).

    CAS  Google Scholar 

  5. R.C.G. Naber, K. Asadi, P.W.M. Blom, D.M. de Leeuw, and B. de Boer: Organic nonvolatile memory devices based on ferroelectricity. Adv. Mater. 22, 933 (2010).

    CAS  Google Scholar 

  6. T. Furukawa, Y. Takahashi, and T. Nakajima: Recent advances in ferroelectric polymer thin films for memory applications. Curr. Appl. Phys. 10, E62 (2010).

    Google Scholar 

  7. Q.X. Chen and P.A. Payne: Industrial applications of piezoelectric polymer transducers. Meas. Sci. Technol. 6, 249 (1995).

    CAS  Google Scholar 

  8. Q.M. Zhang, H. Li, M. Poh, F. Xia, Z.Y. Cheng, H. Xu, and C. Huang: An all-organic composite actuator material with a high-dielectric constant. Nature 419, 284 (2002).

    CAS  Google Scholar 

  9. P. Brochu and Q. Pei: Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10 (2010).

    CAS  Google Scholar 

  10. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q.M. Zhang: A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 1887 (2006).

    CAS  Google Scholar 

  11. X. Zhou, B. Chu, B. Neese, M. Lin, and Q.M. Zhang: Electrical energy density and discharge characteristics of a poly(vinylidene fluoride-chlorotrifluoroethylene) copolymer. IEEE Trans. Dielectr. Electr. Insul. 14, 1133 (2007).

    Google Scholar 

  12. F. Guan, J. Pan, J. Wang, Q. Wang, and L. Zhu: Crystal orientation effect on electric energy storage in poly(vinylidene fluoride-co-hexafluoropropylene) copolymers. Macromolecules 43, 384 (2010).

    CAS  Google Scholar 

  13. F. Guan, J. Wang, J. Pan, Q. Wang, and L. Zhu: Effects of polymorphism and crystallite size on dipole reorientation in poly(vinylidene fluoride) and its random copolymers. Macromolecules 43, 6739 (2010).

    CAS  Google Scholar 

  14. F. Guan, J. Wang, L. Yang, K. Han, Q. Wang, and L. Zhu: Confinement-induced high field antiferroelectric-like behavior in a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer. Macromolecules 44, 2190 (2011).

    CAS  Google Scholar 

  15. F. Guan, J. Wang, L. Yang, B. Guan, K. Han, Q. Wang, and L. Zhu: Confined ferroelectric properties in poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymers for electric energy storage applications. Adv. Funct. Mater. 21, 3176 (2011).

    CAS  Google Scholar 

  16. K. Tashiro: Crystal structure and phase transition of PVDF and related copolymers, in Ferroelectric Polymers: Chemistry, Physics, and Applications, edited by H.S. Nalwa (Marcel Dekker, New York, 1995), p. 63.

    Google Scholar 

  17. A.J. Lovinger: Ferroelectric polymers. Science 220, 1115 (1983).

    CAS  Google Scholar 

  18. R. Gregorio and M. Cestari: Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J. Polym. Sci., Part B: Polym. Phys. 32, 859 (1994).

    CAS  Google Scholar 

  19. G. Zhong, L. Zhang, R. Su, K. Wang, H. Fong, and L. Zhu: Understanding polymorphism formation in electrospun fibers of immiscible poly(vinylidene fluoride) blends. Polymer 52, 2228 (2011).

    CAS  Google Scholar 

  20. H. Benkhati, T.T.M. Tan, and B.J. Jungnickel: Transcrystallization kinetics of poly(vinylidene fluoride). J. Polym. Sci., Part B: Polym. Phys. 39, 2130 (2001).

    CAS  Google Scholar 

  21. A.J. Lovinger: Crystallization of the β phase of poly(vinylidene fluoride) from the melt. Polymer 22, 412 (1981).

    CAS  Google Scholar 

  22. A.J. Lovinger: Unit-cell of the γ phase of poly(vinylidene fluoride). Macromolecules 14, 322 (1981).

    CAS  Google Scholar 

  23. A.J. Lovinger: Conformational defects and associated molecular motions in crystalline poly(vinylidene fluoride). J. Appl. Phys. 52, 5934 (1981).

    CAS  Google Scholar 

  24. T. Miyazaki, Y. Takeda, M. Akasaka, M. Sakai, and A. Hoshiko: Preparation of isothermally crystallized γ-form poly(vinylidene fluoride) films by adding a KBr powder as a nucleating agent. Macromolecules 41, 2749 (2008).

    CAS  Google Scholar 

  25. L. Priya and J.P. Jog: Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: Crystallization and dynamic mechanical behavior studies. J. Polym. Sci., Part B: Polym. Phys. 40, 1682 (2002).

    CAS  Google Scholar 

  26. J. Buckley, P. Cebe, D. Cherdack, J. Crawford, B.S. Ince, M. Jenkins, J. Pan, M. Reveley, N. Washington, and N. Wolchover: Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer 47, 2411 (2006).

    CAS  Google Scholar 

  27. D.R. Dillon, K.K. Tenneti, C.Y. Li, F.K. Ko, I. Sics, and B.S. Hsiao: On the structure and morphology of polyvinylidene fluoride-nanoclay nanocomposites. Polymer 47, 1678 (2006).

    CAS  Google Scholar 

  28. D. Shah, P. Maiti, E. Gunn, D.F. Schmidt, D.D. Jiang, C.A. Batt, and E.R. Giannelis: Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv. Mater. 16, 1173 (2004).

    CAS  Google Scholar 

  29. T. Wu, T. Xie, and G. Yang: Characterization of poly(vinylidene fluoride)/Na+-MMT composites: An investigation into the β-crystalline nucleation effect of Na+-MMT. J. Polym. Sci., Part B: Polym. Phys. 47, 903 (2009).

    CAS  Google Scholar 

  30. L. He, Q. Xu, C. Hue, and R. Song: Effect of multi-walled carbon nanotubes on crystallization, thermal, and mechanical properties of poly(vinylidene fluoride). Polym. Compos. 31, 921 (2010).

    CAS  Google Scholar 

  31. G.H. Kim, S.M. Hong, and Y. Seo: Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-Phase development. Phys. Chem. Chem. Phys. 11, 10506 (2009).

    CAS  Google Scholar 

  32. Y. Li and A. Kaito: Mechanistic investigation into the unique orientation textures of poly(vinylidene fluoride) in blends with nylon 11. Macromol. Rapid Commun. 24, 603 (2003).

    CAS  Google Scholar 

  33. Y. Li and A. Kaito: Crystallization and orientation behaviors of poly(vinylidene fluoride) in the oriented blend with nylon 11. Polymer 44, 8167 (2003).

    CAS  Google Scholar 

  34. K.J. Kim, H.W. Cho, and K.J. Yoon: Effect of P(MMA-co-MAA) compatibilizer on the miscibility of nylon 6/PVDF blends. Eur. Polym. J. 39, 1249 (2003).

    CAS  Google Scholar 

  35. A. Kaito, Y. Iwakura, Y. Li, K. Nakayama, and H. Shimizu: Unique orientation textures induced by confined crystal growth of poly(vinylidene fluoride) in oriented blends with polyamide 6. Macromol. Chem. Phys. 208, 504 (2007).

    CAS  Google Scholar 

  36. B. Na, W. Xu, R. Lv, Z. Li, N. Tian, and S. Zou: Toughening of nylon-6 by semicrystalline poly(vinylidene fluoride): Role of phase transformation and fibrillation of dispersed particles. Macromolecules 43, 3911 (2010).

    CAS  Google Scholar 

  37. C. Lai, G. Zhong, Z. Yue, G. Chen, L. Zhang, A. Vakili, Y. Wang, L. Zhu, J. Liu, and H. Fong: Investigation of post-spinning stretching process on morphological, structural, and mechanical properties of electrospun polyacrylonitrile copolymer nanofibers. Polymer 52, 519 (2011).

    CAS  Google Scholar 

  38. F.M. Li, K.H. Kim, J.J. Kulig, E.P. Savitski, W.J. Brittain, F.W. Harris, S.Z.D. Cheng, S.F. Hubbard, and K.D. Singer: High-temperature aromatic polyimide film displaying nonlinear-optical 2nd-harmonic generation based on the approach of the poled guest-host system. J. Mater. Chem. 5, 253 (1995).

    Google Scholar 

  39. H.N. Na, X.W. Liu, J.Q. Li, Y.H. Zhao, C. Zhao, and X.Y. Yuan: Formation of core/shell ultrafine fibers of PVDF/PC by electrospinning via introduction of PMMA or BTEAC. Polymer 50, 6340 (2009).

    CAS  Google Scholar 

  40. H.N. Na, X.W. Liu, H. Sun, Y.H. Zhao, C. Zhao, and X.Y. Yuan: Electrospinning of ultrafine PVDF/PC fibers from their dispersed solutions. J. Polym. Sci., Part B: Polym. Phys. 48, 372 (2010).

    CAS  Google Scholar 

  41. G. Zhong, K. Wang, L. Zhang, Z-M. Li, H. Fong, and L. Zhu: Nanodroplet formation and exclusive homogenously nucleated crystallization in confined electrospun immiscible polymer blend fibers of polystyrene and poly(ethylene oxide). Polymer 52, 5397 (2011).

    CAS  Google Scholar 

  42. B.G. Colvin and P. Storr: Crystal-structure of polyacrylonitrile. Eur. Polym. J. 10, 337 (1974).

    CAS  Google Scholar 

  43. X.D. Liu and W. Ruland: X-Ray studies on the structure of polyacrylonitrile fibers. Macromolecules 26, 3030 (1993).

    CAS  Google Scholar 

  44. A. Gradys, P. Sajkiewicz, S. Adamovsky, A. Minakov, and C. Schick: Crystallization of poly(vinylidene fluoride) during ultra-fast cooling. Thermochim. Acta 461, 153 (2007).

    CAS  Google Scholar 

  45. M. Kobayashi, K. Tashiro, and H. Tadokoro: Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules 8, 158 (1975).

    CAS  Google Scholar 

  46. Q. Gao and J. Scheinbeim: Crystallization studies of polymer blends of nylon-11/poly(vinylidene fluoride). Polym. J. 35, 345 (2003).

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Science Foundation (DMR-0907580). R. Su and G. Zhong acknowledge the Chinese Scholar Council for financial support. The authors thank Professor Gary Wnek and Mr. Linghui Meng at Case Western Reserve University for helping with electrospinning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Fong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, R., Zhong, G., Fu, Q. et al. Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene fluoride)/polyacrylonitrile blends. Journal of Materials Research 27, 1389–1398 (2012). https://doi.org/10.1557/jmr.2012.56

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.56

Navigation