Skip to main content
Log in

Indentation size effect in FCC metals: An examination of experimental techniques and the bilinear behavior

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The indentation size effect (ISE) and the bilinear behavior for pure face centered cubic (FCC) metals including aluminum, nickel, silver, and 70/30 copper–zinc (α-brass) alloy using a single Berkovich indenter tip in a single test machine were investigated. The results confirmed that this behavior is mechanistic in nature and were consistent with those reported by A.A. Elmustafa and D.S. Stone [J. Mech. Phys. Solids51, 357–381 (2003)] of the ISE and the bilinear behavior using two separate indenter tips (Berkovich and Vickers) from two separate machines. Therefore, the bilinear behavior is present regardless of tip geometry or machine used. We also investigated the cause for a deviation in the continuous stiffness measurement (CSM) data from discrete data points obtained using the load control protocol at shallow depth. We conducted experiments near grain boundaries to determine if the CSM deviation at shallow depths were caused by a hardening effect due to dislocation interaction with the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
TABLE I.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.

Similar content being viewed by others

References

  1. W.J. Poole, M.F. Ashby, and N.A. Fleck: Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Mater. 34, 559–564 (1996).

    Article  CAS  Google Scholar 

  2. J. Mencik: Determination of mechanical properties by instrumented indentation. Meccanica 42, 19–29 (2007).

    Article  Google Scholar 

  3. Q. Ma and D.R. Clarke: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995).

    Article  CAS  Google Scholar 

  4. F.R.N. Nabarro, S. Shrivastava, and S.B. Luyckx: The size effect in microindentation. Philos. Mag. 86, 4173–4180 (2006).

    Article  CAS  Google Scholar 

  5. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475–487 (1994).

    Article  CAS  Google Scholar 

  6. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: Mechanism-based strain gradient plasticity - I. Theory. J. Mech. Phys. Solids 47, 1239–1263 (1999).

    Article  Google Scholar 

  7. Y. Huang, H. Gao, W.D. Nix, and J.W. Hutchinson: Mechanism-based strain gradient plasticity. II. Analysis. J. Mech. Phys. Solids 48, 99–128 (2000).

    Article  Google Scholar 

  8. J.-Y. Kim, S.-K. Kang, J.R. Greer, and D. Kwon: Evaluating plastic flow properties by characterizing indentation size effect using a sharp indenter. Acta Mater. 56, 3338–3343 (2008).

    Article  CAS  Google Scholar 

  9. K. Durst, B. Backes, and M. Goken: Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 52, 1093–1097 (2005).

    Article  CAS  Google Scholar 

  10. Y. Huang, F. Zhang, K.C. Hwang, W.D. Nix, G.M. Pharr, and G. Feng: A model of size effects in nano-indentation. J. Mech. Phys. Solids 54, 1668–1686 (2006).

    Article  Google Scholar 

  11. A.A. Elmustafa and D.S. Stone: Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity. J. Mech. Phys. Solids 51, 357–381 (2003).

    Article  CAS  Google Scholar 

  12. A.A. Elmustafa, A.A. Ananda, and W.M. Elmahboub: Bilinear behavior in nano and microindentation tests of fcc polycrystalline materials. J. Eng. Mater. Technol. Trans. ASME 126, 353–359 (2004).

    Article  CAS  Google Scholar 

  13. W. Tayon, R. Crooks, M. Domack, J. Wagner, and A.A. Elmustafa: EBSD study of delamination fracture in Al-Li alloy 2090. Exp. Mech. 50, 135–143 (2010).

    Article  CAS  Google Scholar 

  14. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  15. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004).

    Article  CAS  Google Scholar 

  16. A.H. Almasri and G.Z. Voyiadjis: Nano-indentation in FCC metals: Experimental study. Acta Mech. 209, 1–9 (2010).

    Article  Google Scholar 

  17. D. Faghihi and G.Z. Voyiadjis: Size effects and length scales in nanoindentation for body-centred cubic materials with application to iron. Proc. Inst. Mech. Eng. N J. Nanoeng. Nanosyst. 224(1–2), 5–18 (2010).

    CAS  Google Scholar 

  18. G.Z. Voyiadjis and D. Faghihi: Variable (intrinsic) material length scale for face-centred cubic metals using nano-indentation. Proc. Inst. Mech. Eng. N J. Nanoeng. Nanosyst. 224(3), 123–147 (2010).

    CAS  Google Scholar 

  19. G.Z. Voyiadjis and R. Peters: Size effects in nanoindentation: An experimental and analytical study. Acta Mech. 211, 131–153 (2010).

    Article  Google Scholar 

  20. G.M. Pharr, J.H. Strader, and W.C. Oliver: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653–666 (2009).

    Article  CAS  Google Scholar 

  21. J.W. Wyrzykowski and M.W. Grabski: Hall-Petch relation in aluminium and its dependence on the grain boundary structure. Philos. Mag. A 53(4 pt 1), 505–520 (1986).

    Article  CAS  Google Scholar 

  22. P.C. Wo and A.H.W. Ngan: Investigation of slip transmission behavior across grain boundaries in polycrystalline Ni3Al using nanoindentation. J. Mater. Res. 19(1), 189–201 (2004).

    Article  CAS  Google Scholar 

  23. M.G. Wang and A.H.W. Ngan: Indentation strain burst phenomenon induced by grain boundaries in niobium. J. Mater. Res. 19(8), 2478–2486 (2004).

    Article  CAS  Google Scholar 

  24. Y.M. Soifer, A. Verdyan, M. Kazakevich, and E. Rabkin: Nanohardness of copper in the vicinity of grain boundaries. Scr. Mater. 47(12), 799–804 (2002).

    Article  CAS  Google Scholar 

  25. K.E. Aifantis, W.A. Soer, J.T.M. De Hosson, J.R. Willis: Interfaces within strain gradient plasticity: Theory and experiments. Acta Mater. 54(19), 5077–5085 (2006).

    Article  CAS  Google Scholar 

  26. A.J. Beaudoin, A. Acharya, S.R. Chen, D.A. Korzekwa, and M.G. Stout: Consideration of grain-size effect and kinetics in the plastic deformation of metal polycrystals. Acta Mater. 48(13), 3409–3423 (2000).

    Article  CAS  Google Scholar 

  27. B. Yang and H. Vehoff: Dependence of nanohardness upon indentation size and grain size—A local examination of the interaction between dislocations and grain boundaries. Acta Mater. 55, 849–856 (2007).

    Article  CAS  Google Scholar 

  28. P. Sayan and J. Ulrich: Effect of various impurities on the hardness of NaCl crystals. Cryst. Res. Technol. 36, 1253–1262 (2001).

    Article  CAS  Google Scholar 

  29. T.B. Britton, D. Randman, and A.J. Wilkinson: Nanoindentation study of slip transfer phenomenon at grain boundaries. J. Mater. Res. 24(3), 607–615 (2009).

    Article  CAS  Google Scholar 

  30. G.M. Pharr, E.G. Herbert, and G. Yanfei: The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271–292 (2010).

    Article  CAS  Google Scholar 

  31. S. Pathak, J. Michler, K. Wasmer, and S.R. Kalidindi: Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. J. Mater. Sci. 47 (2), 815–823, 1–9 (2012).

    Google Scholar 

  32. D. Faghihi and G.Z. Voyiadjis: Determination of nanoindentation size effects and variable material intrinsic length scale for body-centered cubic metals. Mech. Mater. 44, 189–211 (2012).

    Article  Google Scholar 

  33. T.C. Lee, I.M. Robertson, and H.K. Birnbaum: Prediction of slip transfer mechanisms across grain boundaries. Scr. Metall. 23(5), 799–803 (1989).

    Article  CAS  Google Scholar 

  34. S. Vadalakonda, R. Banerjee, A. Puthcode, and R. Mirshams: Comparison of incipient plasticity in bcc and fcc metals studied using nanoindentation. Mater. Sci. Eng., A 426(1–2), 208–213 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmageed Elmustafa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stegall, D.E., Mamun, M.A., Crawford, B. et al. Indentation size effect in FCC metals: An examination of experimental techniques and the bilinear behavior. Journal of Materials Research 27, 1543–1552 (2012). https://doi.org/10.1557/jmr.2012.91

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.91

Navigation