Skip to main content
Log in

Quantifying the progression of dynamic recrystallization in severe shear deformation at high strain rates

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper examines the onset and progression of dynamic recrystallization (DRX) phenomena under shear deformation conditions characterized by strains >1 and strain rates >102/s by purposing large strain machining (LSM) as a test of microstructure response. To accomplish this, samples are created using LSM while characterizing the deformation using digital image correlation and infrared thermography. Microstructural consequences resulting from the characterized thermomechanical conditions are examined using electron backscattered diffraction. The progression of DRX is measured by identifying the threshold of grain orientation spread demarcating the onset of recrystallization and utilizing this threshold to segregate the microstructure and quantify the extent of DRX. A model for the onset of DRX as a function of thermomechanics of deformation is presented. This characterization can help understand surface microstructures resulting from shear-based manufacturing processes, such as turning, milling, shaping, etc., that are created under analogous thermomechanical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I
FIG. 2
TABLE II
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. A. Mishra, B.K. Kad, F. Gregori, and M.A. Meyers: Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis. Acta Mater. 55(1), 13 (2007).

    Article  CAS  Google Scholar 

  2. R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51(7), 881 (2006).

    Article  CAS  Google Scholar 

  3. M. Kawasaki, B. Ahn, and T.G. Langdon: Microstructural evolution in a two-phase alloy processed by high-pressure torsion. Acta Mater. 58(3), 919 (2010).

    Article  CAS  Google Scholar 

  4. R. Kuzel, M. Janecek, Z. Matej, J. Cizek, M. Dopita, and O. Srba: Microstructure of equal-channel angular pressed Cu and cu-Zr samples studied by different methods. Metall. Mater. Trans. A 41(5), 1174 (2010).

    Article  CAS  Google Scholar 

  5. M.R. Shankar, B.C. Rao, S. Lee, S. Chandrasekar, A.H. King, and W.D. Compton: Severe plastic deformation (SPD) of titanium at near-ambient temperature. Acta Mater. 54(14), 3691 (2006).

    Article  CAS  Google Scholar 

  6. Y. Amouyal, S.V. Divinski, L. Klinger, and E. Rabkin: Grain boundary diffusion and recrystallization in ultrafine grain copper produced by equal channel angular pressing. Acta Mater. 56(19), 5500 (2008).

    Article  CAS  Google Scholar 

  7. X. Molodova, G. Gottstein, M. Winning, and R.J. Hellmig: Thermal stability of ECAP processed pure copper. Mater. Sci. Eng., A 460-461(15), 204 (2007).

    Article  CAS  Google Scholar 

  8. G. Gottstein: Physikalische Grundlagen der Metallkunde, 2nd ed. (Springer, Berlin, Germany, 2001).

    Book  Google Scholar 

  9. R.W. Cahn and P. Haasen: Physical Metallurgy, Part 2, 3rd ed. (Physics Publishing, North Holland, 1983).

    Google Scholar 

  10. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier Science Ltd, London, 2002).

    Google Scholar 

  11. T. Sakai and J.J. Jonas: Overview no. 35 dynamic recrystallization: Mechanical and microstructural considerations. Acta Metall. 32(2), 189 (1984).

    Article  CAS  Google Scholar 

  12. F. Montheillet and J. Le Coze: Influence of purity on the dynamic recrystallization of metals and alloys. Phys. Status Solidi A 189(1), 51 (2002).

    Article  CAS  Google Scholar 

  13. U. Andrade, M.A. Meyers, K.S. Vecchio, and A.H. Chokshi: Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper. Acta Metall. Mater. 42(9), 3183 (1994).

    Article  CAS  Google Scholar 

  14. T. Nicholas: Tensile testing at high rates of strain. Exp. Mech. 21, 177 (1981).

    Article  Google Scholar 

  15. S. Lindholm, A. Nagy, G.R. Johnson, and J.M. Hoegfeldt: Large strain, high strain rate testing of copper. J. Eng. Mater. Technol. 102(4), 376 (1980).

    Article  CAS  Google Scholar 

  16. G.T. GrayIII: Mechanical Testing and Evaluation, 10th ed. (ASM Handbook, Ohio, 2000).

    Google Scholar 

  17. H.J. McQueen and S. Bergerson: Dynamic recrystallization of copper during hot torsion. Met. Sci. 6, 25 (1972).

    Article  CAS  Google Scholar 

  18. H.J. McQueen: Materials Technology (An Inter-American Approach ASME, New York, 1968), pp. 379, 388.

    Google Scholar 

  19. J.J. Jonas, C.M. Sellars, and W.J.McG. Tegart: Strength and structure under hot-working conditions. Metall. Rev. 14, 1 (1969).

    Article  Google Scholar 

  20. C.M. Sellars and W.J.McG. Tegart: On the mechanism of hot deformation. Acta Metall. 14(9), 1136 (1966).

    Article  CAS  Google Scholar 

  21. J.P. Sah, G.J. Richardson, and C.M. Sellars: Recrystallization during hot deformation of Nickel. J. Aust. Inst. Met. 14, 292 (1969).

    CAS  Google Scholar 

  22. J.A. Hines and K.S. Vecchiot: Recrystallization kinetics within adiabatic shear bands. Acta Mater. 45(2), 635 (1997).

    Article  CAS  Google Scholar 

  23. Y.B. Xu, W.L. Zhong, Y.J. Chen, L.T. Shen, Q. Liu, Y.L. Bai, and M.A. Meyers: Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy. Mater. Sci. Eng., A 299, 287 (2001).

    Article  Google Scholar 

  24. M. Meyers: Dynamic Behavior of Materials (John Wiley & Sons, New York, 1994).

    Book  Google Scholar 

  25. M.A. Meyers, G. Subhash, B.K. Kad, and L. Prasad: Evolution of microstructure and shear-band formation in α-hcp titanium. Mech. Mater. 17, 175 (1994).

    Article  Google Scholar 

  26. A.H. Chokshi and M.A. Meyers: The prospects for superplasticity at high strain rates: Preliminary considerations and an example. Scr. Metall. Mater. 24, 605 (1990).

    Article  CAS  Google Scholar 

  27. S. Shekhar, J. Cai, S. Basu, S. Abolghasem, and M.R. Shankar: Effect of strain-rate in severe plastic deformation on microstructure refinement and stored energies. J. Mater. Res. 26, 395 (2011).

    Article  CAS  Google Scholar 

  28. G.H. Akbari, C.M. Sellars, and J.A. Whiteman: Microstructural development during warm rolling of an if steel. Acta Mater. 45(12), 5047 (1997).

    Article  CAS  Google Scholar 

  29. G.J. Baxter, D. Dulv, P.L. Orsetti Rossi, C.M. Sellars, J.A. Whiteman, H.R. Shercliff, and M.F. Ashby: Microstructural and crystallographic aspects of recrystallization. In 16th Riso International Symposium on Material Science, Microstructural and Crystallographic Aspects of Recrystallization, edited by N. Hansen, Y.L. Liu, D.J. Jensen, and B. Ralph (RISO National Laboratory, Roskilde, 1995), p. 267.

    Google Scholar 

  30. I. Haessner and S. Hofmann: Recrystallization of Metallic Materials (Riederer Verlag, Stuttgart, Germany, 1978).

    Google Scholar 

  31. P. Gerber, J. Tarasiuk, T. Chauveau, and B. Bacroix: A quantitative analysis of the evolution of texture and stored energy during annealing of cold rolled copper. Acta Mater. 51(20), 6359 (2003).

    Article  CAS  Google Scholar 

  32. S. Mitsche, P. Poelt, and C. Sommitsch: Recrystallization behaviour of the nickel-based alloy 80 A during hot forming. J. Microsc. 227(3), 267 (2007).

    Article  CAS  Google Scholar 

  33. J. Tarasiuk, P. Gerber, and B. Bacroix: Estimation of recrystallized volume fraction from EBSD data. Acta Mater. 50, 1467 (2002).

    Article  CAS  Google Scholar 

  34. P. Poelt, C. Sommitsch, S. Mitsche, and M. Walter: Dynamic recrystallization of Ni-base alloys—experimental results and comparisons with simulations. Mater. Sci. Eng., A 420, 306 (2006).

    Article  CAS  Google Scholar 

  35. F.J. Humphreys: Review grain and subgrain characterisation by electron backscatter diffraction. J. Mater. Sci. 36, 3833 (2001).

    Article  CAS  Google Scholar 

  36. T.R. McNelley, A.P. Zhilyaev, S. Swaminathan, J. Su, and E. Sarath Menon: Application of EBSD methods to severe plastic deformation (SPD) and related processing methods. Chapter in Electron Backscatter Diffraction in Materials Science, edited by A.J. Schwartz, M. Kumar, B.L. Adams and D.P. Field (Kluwer Academic Plenum Publishers, New York, 2000).

    Google Scholar 

  37. S. Cheong and H. Weiland: Understanding a microstructure using GOS (grain orientation spread) and its application to recrystallization study of hot deformed Al-Cu-Mg alloys. Mater. Sci. Forum 558-559, 153 (2007).

    Article  Google Scholar 

  38. C.V.S. Lim: Length scale effect on the microstructure evolution of Cu Layers in a Roll-Bonded CuNb composite, Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 2008.

    Google Scholar 

  39. M.H. Alvi, B.S. El-Dasher, and A.D. Rollett: Hot deformation of aluminum alloys III. ed. Z. Jin, A. Beaudoin, T. Bieler, and B. Radhakrishnan (TMS, Warrendale, PA (2003)), p. 3, 12.

    Google Scholar 

  40. R.A. Vandermeer and D. Juul Jensen: Recrystallization in hot vs cold deformed commercial aluminum: A microstructure path comparison. Acta Mater. 51, 3005 (2003).

    Article  CAS  Google Scholar 

  41. M.H. Alvi, S. Cheong, H. Weiland, and A.D. Rollett: 1st International Symposium of Metallurgical Modelling of Aluminum Alloys, Pittsburgh, PA, 2003; p. 183.

    Google Scholar 

  42. M.H. Alvi, S. Cheong, H. Weiland, and A.D. Rollett: Recrystallization and texture development in hot rolled 1050 aluminum. Mater. Sci. Forum 467-470, 357 (2004).

    Article  Google Scholar 

  43. S. Mitsche, P. Poelt, C. Sommitsch, and M. Walter: Quantification of the recrystallized fraction in a nickel-base-alloy from EBSD-data. Microsc. Microanal. 9, 344 (2003).

    Article  Google Scholar 

  44. S. Mitsche, C. Sommitsch, P. Pölt, and S. Kleber: Recrystallization Behaviour of the Nickel based alloy 80 A during hot forming (Proc. 13th Conf. And Workshop on electron backscatter diffraction, University of Oxford, United Kingdom, Royal Microscopical Society (RMS), 2006).

    Google Scholar 

  45. S. Abolghasem, S. Basu, S. Shekhar, J. Cai, and M.R. Shankar: Mapping subgrain sizes resulting from severe simple shear deformation. Acta Mater. 60, 376 (2012).

    Article  CAS  Google Scholar 

  46. D. Kuhlmann-Wilsdorf: A critical test on theories of work-hardening for the case of drawn iron wire. Met. Trans. 1, 3173 (1970).

    Google Scholar 

  47. D. Kuhlmann-Wilsdorf: Work hardenning in tension and fatigue, in edited by A.W. Thompson (The Metallurgical Society of AIME: New York, 1977).

  48. E. Nes: Modeling of work hardening and stress saturation in FCC metals. Prog. Mater. Sci. 41, 129 (1998).

    Article  Google Scholar 

  49. P.L.B. Oxley and W.F. Hasting: Predicting the strain rate in the zone of intense shear in which the chip is formed in machining from the dynamic flow stress properties of the work material and the cutting conditions. Proc. R. Soc. London, Ser. A 356, 395 (1977).

    Article  CAS  Google Scholar 

  50. S. Lee, J. Hwang, M.R. Shankar, S. Chandrasekar, and W.D. Compton: Large strain deformation field in machining. Metall. Mater. Trans. A 37, 1633 (2006).

    Article  Google Scholar 

  51. D. Raybould and T. Sheppard: Axisymmetric extrusion: The effect of temperature rise and strain rate on the activation enthalpy and material constants of some aluminum alloys and their relation to recrystallization, substructure and subsequent mechanical properties. J. Inst. Met. Mar. 101, 65 (1973).

    CAS  Google Scholar 

  52. S. Swaminathan, M.R. Shankar, B.C. Rao, W.D. Compton, S. Chandrasekar, A.H. King, and K.P. Trumble: Severe plastic deformation (SPD) and nanostructured materials by machining. J. Mater. Sci. 42, 1529 (2007).

    Article  CAS  Google Scholar 

  53. C.E. Campbell, L.A. Bendersky, W.J. Boettinger, and R. Ivester: Microstructural characterization of Al-7075-T651 chips and work pieces produced by high-speed machining. Mater. Sci. Eng., A 430, 15 (2006).

    Article  CAS  Google Scholar 

  54. E.K. Cerreta, I.J. Frank, G.T. GrayIII, C.P. Trujillo, D.A. Korzekwa, and L.M. Dougherty: The influence of microstructure on the mechanical response of copper in shear. Mater. Sci. Eng. 501(1), 207 (2009).

    Article  CAS  Google Scholar 

  55. A.H. Adibi-Sedeh, V. Madhavan, and B.J. Bahr: Extension of oxley’s analysis of machining to use different material models. J. Manuf. Sci. Eng. 125, 656 (2003).

    Article  Google Scholar 

  56. S. Shekhar, J. Cai, S. Basu, S. Abolghasem, and M.R. Shankar: Effect of severe plastic deformation in machining elucidated via rate-strain-microstructure mappings. J. Manuf. Sci. Eng. 134, 31008–31011 (2012).

    Article  Google Scholar 

  57. C. Zener and J.H. Hollomon: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22 (1944).

    Article  Google Scholar 

  58. W.S. Zhao, N.R. Tao, J.Y. Guo, Q.H. Lu, and K. Lu: High density nano-scale twins in Cu induced by dynamic plastic deformation. Scr. Mater. 53, 745 (2005).

    Article  CAS  Google Scholar 

  59. Z.Y. Ma and S.C. Tjong: High temperature creep behavior of in-situ TiB2 particulate reinforced copper-based composite. Mater. Sci. Eng., A 284, 70 (2000).

    Article  Google Scholar 

  60. V. Randle and O. Engler: Introduction to texture analysis: Macrotexture, microtexture and orientation mapping (Gordon and Breach Science Publishers, Amsterdam, 2000).

    Book  Google Scholar 

  61. H. Gao and Y. Huang: Geometrically necessary dislocation and size-dependent plasticity. Scr. Mater. 48, 113 (2003).

    Article  CAS  Google Scholar 

  62. S.I. Wright: Proceedings of the 12th International Conference on Textures. Montreal, Canada (1999), p. 104, 109.

    Google Scholar 

  63. M.H. Alvi: Recrystallization kinetics and microstructural evolution in hot rolled aluminum alloys. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 2005.

    Google Scholar 

  64. H. Jazaeri and F.J. Humphreys: Quantifying recrystallization by electron backscatter diffraction. J. Microsc. 213, 241 (2003).

    Article  Google Scholar 

  65. O. Engler and M. Huh: Evolution of the cube texture in high purity aluminum capacitor foils by continuous recrystallization and subsequent grain growth. Mater. Sci. Eng., A 271, 371 (1999).

    Article  Google Scholar 

  66. H. Jazaeri and F.J. Humphreys: The effect of initial grain size on transition from discontinuous to continuous recrystallization in a highly cold rolled Al–Fe–Mn alloy. Mater. Sci. Forum 396, 551 (2002).

    Article  Google Scholar 

  67. H. Ahlborn, E. Hornbogen, and U. Koster: Recrystallisation mechanism and annealing texture in aluminium-copper alloys. J. Mater. Sci. 4, 944 (1969).

    Article  CAS  Google Scholar 

  68. H. Abrams: Grain size measurement by the intercept method. Metallography 4, 59 (1971).

    Article  Google Scholar 

Download references

Acknowledgments

Support from the National Science Foundation (Grant Nos. 0927410 and 0856626) is gratefully acknowledged. The authors are also grateful to the anonymous reviewers, whose thorough reviews helped improve the paper and the analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ravi Shankar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abolghasem, S., Basu, S. & Shankar, M.R. Quantifying the progression of dynamic recrystallization in severe shear deformation at high strain rates. Journal of Materials Research 28, 2056–2069 (2013). https://doi.org/10.1557/jmr.2013.201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.201

Navigation