Skip to main content
Log in

Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parameter character and atomic scale structure finds that when layer thicknesses refine well below one micrometer, the interfaces self-organize to a few interface orientation relationships. With atomic scale and crystal plasticity modeling, we identify that the two controlling factors that determine whether an interface is stable under high strain rolling are orientation stability of the bicrystal and interface formation energy. A figure-of-merit is introduced that not only predicts the development of the prevailing interfaces but also explains why other interfaces did not develop. Through a suite of nanomechanical and bulk test results, we show that ARB composites containing these stable interfaces are found to have exceptional hardness (~4.5 GPa) and strength (~2 GPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I
TABLE II
FIG. 2
FIG. 3
TABLE III
FIG. 4
FIG. 5
FIG. 6
TABLE IV
TABLE V
TABLE VI
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. S-B. Lee, J.E. LeDonne, S.C.V. Lim, I.J. Beyerlein, and A.D. Rollett: The five-parameter heterophase interface character distribution (HICD) of physical vapor-deposited and accumulative roll-bonded Cu-Nb multilayer composites. Acta Mater. 60, 1747 (2012).

    Article  CAS  Google Scholar 

  2. J.S. Carpenter, S.C. Vogel, J. LeDonne, D.L. Hammon, I.J. Beyerlein, and N.A. Mara: Bulk texture evolution of Cu-Nb nanolamellar composites during accumulative roll bonding. Acta Mater. 60, 1576 (2012).

    Article  CAS  Google Scholar 

  3. I.J. Beyerlein, N.A. Mara, J. Wang, J.S. Carpenter, S.J. Zheng, W.Z. Han, R.F. Zhang, K. Kang, T. Nizolek, and T.M. Pollock: Structure-property-functionality of bimetal interfaces. JOM 64, 1192 (2012).

    Article  CAS  Google Scholar 

  4. M.Z. Quadir, O. Al-Buhamad, L. Bassman, and M. Ferry: Development of a recovered/recrystallized multilayered microstructure in Al alloys by accumulative roll bonding. Acta Mater. 55, 5438–5448 (2007).

    Article  CAS  Google Scholar 

  5. M.Z. Quadir, M. Ferry, O. Al-Buhamad, and P.R. Munroe: Shear banding and recrystallization texture development in a multilayered Al alloy sheet produced by accumulative roll bonding. Acta Mater. 57, 29–40 (2009).

    Article  CAS  Google Scholar 

  6. J.S. Carpenter, R.J. McCabe, I.J. Beyerlein, T.A. Wynn, and N.A. Mara: A wedge-mounting technique for nanoscale electron backscatter diffraction. J. Appl. Phys. doi: 10.1063/1.4794388.

  7. S.J. Zheng, I.J. Beyerlein, J. Wang, J.S. Carpenter, W.Z. Han, and N.A. Mara: Deformation twinning mechanisms from bi-metal interfaces as revealed by in-situ straining in the TEM. Acta Mater. 60, 5858 (2012).

    Article  CAS  Google Scholar 

  8. M.J. Demkowicz and L. Thilly: Structure, shear resistance, and interaction with point defects of interfaces in Cu-Nb nanocomposites synthesized by severe plastic deformation. Acta Mater. 59, 7744 (2011).

    Article  CAS  Google Scholar 

  9. K. Kang, J. Wang, S.J. Zheng, and I.J. Beyerlein: Atomic structure variations of mechanically stable interfaces. J. Appl. Phys. 111, 053531 (2012).

    Article  CAS  Google Scholar 

  10. J. Wang, K. Kang, R.F. Zhang, S.J. Zheng, I.J. Beyerlein, and N.A. Mara: Structure and property of interfaces in ARB Cu/Nb laminated composites. JOM 64 (10), 1208 (2012).

    Article  CAS  Google Scholar 

  11. W.Z. Han, J.S. Carpenter, J. Wang, I.J. Beyerlein, and N.A. Mara: Atomic-level study of twin nucleation from fcc/bcc interfaces in nanolamellar composites. Appl. Phys. Lett. 100, 011911 (2012).

    Article  CAS  Google Scholar 

  12. J.S. Carpenter, S.J. Zheng, R.F. Zhang, S.C. Vogel, I.J. Beyerlein, and N.A. Mara: Thermal stability of Cu-Nb nanolamellar composites fabricated via accumulative roll bonding. Philos. Mag. (2013). doi: 10.1080/14786435.2012.731527.

    Google Scholar 

  13. J.S. Carpenter, X. Liu, A. Darbal, N.T. Nuhfer, R.J. McCabe, S.C. Vogel, J.E. LeDonne, A.D. Rollett, K. Barmak, I.J. Beyerlein, and N.A. Mara: A comparison of texture results obtained using precession electron diffraction and neutron diffraction methods at diminishing length scales in ordered bimetallic nanolamellar composites. Scr. Mater. 67, 336 (2012).

    Article  CAS  Google Scholar 

  14. S.C.V. Lim and A.D. Rollett: Length scale effects on recrystallization and texture evolution in Cu layers of a roll-bonded Cu-Nb composite. Mater. Sci. Eng., A 520, 189 (2009).

    Article  CAS  Google Scholar 

  15. J.R. Mayeur, I.J. Beyerlein, C.A. Bronkhorst, H.M. Mourad, and B.L. Hansen. 2012. A crystal plasticity study of interfacial stability of CuNb bicrystals. Int. J. Plast. (2013) Accepted. doi: 10.1016/j.ijplas.2013.02.006.

    Google Scholar 

  16. B.L. Hansen, J.S. Carpenter, S.D. Sintay, C.A. Bronkhorst, R.J. McCabe, J.R. Mayeur, H.M. Mourad, I.J. Beyerlein, N.A. Mara, S.R. Chen, and Gray G.T. III: Modeling the texture evolution of Cu/Nb layered composites during rolling. Int. J. Plast. (2012) in press. doi: 10.1016/j.ijplas.2013.03.001.

    Google Scholar 

  17. I.J. Beyerlein, N.A. Mara, D. Bhattacharyya, C.T. Necker, and D.J. Alexander: Texture evolution via combined slip and deformation twinning in rolled silver-copper eutectic nanocomposite. Int. J. Plast. 27 (1), 121–146 (2011).

    Article  CAS  Google Scholar 

  18. J. Hirsch and K. Lücke: Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals - I. Description of rolling texture development in homogeneous CuZn alloys. Acta Metall. 36, 2863–2882 (1988).

    Article  CAS  Google Scholar 

  19. D. Raabe, J. Ball, and G. Gottstein: Rolling textures of Cu-20% Nb composite. Scr. Metall. Mater. 27, 211 (1992).

    Article  CAS  Google Scholar 

  20. K. Kang, J. Wang, and I.J. Beyerlein: Minimum energy structures of faceted, incoherent interfaces. J. Appl. Phys. 112, 073501 (2012).

    Article  CAS  Google Scholar 

  21. J.K. Chen, G. Chen, and Reynolds W.T. Jr.: Interfacial structure and growth mechanisms of lath-shaped precipitates in Ni-45 wt% Cr. Philos. Mag. A 78, 4415 (1997).

    Google Scholar 

  22. Y. Ashkenazy, N.Q. Vo, D. Schwen, R.S. Averback, and P. Bellon: Shear-induced chemical mixing in heterogeneous systems. Acta Mater. 60, 984 (2012).

    Article  CAS  Google Scholar 

  23. X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D.H. Ping, and K. Hono: Solid state amorphization in cold drawn Cu/Nb wires. Acta Mater. 49, 389 (2001).

    Article  CAS  Google Scholar 

  24. J. Hirsch and K. Lücke: Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals - II. Simulation and interpretation of experiments on the basis of Taylor-type theories. Acta Metall. 36, 2883 (1988).

    Article  CAS  Google Scholar 

  25. Y. Zhou, L.S. Toth, and K.W. Neale: On the stability of the ideal orientations of rolling textures for f.c.c. polycrystals. Acta Metall. Mater. 40, 3179 (1992).

    Article  CAS  Google Scholar 

  26. L.S. Toth, J.J. Jonas, D. Daniel, and R.K. Ray: Development of ferrite rolling textures in low- and extra low-carbon steels. Metall. Trans. A 21, 2985 (1990).

    Article  Google Scholar 

  27. Z.Q. Wang and I.J. Beyerlein: An atomistically informed dislocation dynamics model for the plastic anisotropy and tension-compression asymmetry of bcc metals. Int. J. Plast. 27 (10), 1471 (2011).

    Article  CAS  Google Scholar 

  28. G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook (MIT Press, London, UK, 1971).

    Google Scholar 

  29. M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth: Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 2 (2008).

    Article  CAS  Google Scholar 

  30. A.F. Voter: Los Alamos Unclassified Technical; Report No. LA-UR 93-3901 (1993).

    Google Scholar 

  31. R. Johnson and D.J. Oh: Analytic embedded atom method model for BCC metals. J. Mater. Res. 4, 1195 (1989).

    Article  CAS  Google Scholar 

  32. M.J. Demkowicz and R.G. Hoagland: Simulations of collision cascades in Cu-Nb layered composites using an EAM interatomic potential. Int. J. Appl. Mech. 1, 421 (2009).

    Article  Google Scholar 

  33. J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56 (6), 654–724 (2011).

    Article  CAS  Google Scholar 

  34. E.D. Eason, G.R. Odette, R.K. Nanstad, and T. Yamamoto: A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels. Oak Ridge National Laboratory Report, ORNL/TM-2006/530 (2006).

    Google Scholar 

  35. A. Misra, J.P. Hirth, and R.G. Hoagland: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53 (18), 4817–4824 (2005).

    Article  CAS  Google Scholar 

  36. Z.Q. Wang, I.J. Beyerlein, and R. LeSar: Plastic anisotropy of fcc single crystals in high rate deformation. Int. J. Plast. 25, 26 (2009).

    Article  CAS  Google Scholar 

  37. A. Misra and R.G. Hoagland: Bimetallic layered nanocomposites: Synthesis, structure and mechanical properties, in The Dekker Encyclopedia of Nanoscience and Nanotechnology, edited by J.A. Schwarz, C. Contescu, and K. Putyera (Taylor & Francis, Inc., 2005) 10.1081/E-ENN-120013790.

    Google Scholar 

  38. S.R. Kalidindi and S. Pathak: Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater. 56 (14), 3523–3532 (2008).

    Article  CAS  Google Scholar 

  39. S. Pathak, J. Michler, K. Wasmer, and S.R. Kalidindi: Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. J. Mater. Sci. 47 (2), 815–823 (2012).

    Article  CAS  Google Scholar 

  40. N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, and A. Misra: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92 (23), 231901–231903 (2008).

    Article  CAS  Google Scholar 

  41. N.A. Mara, D. Bhattacharyya, J.P. Hirth, P. Dickerson, and A. Misra: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97 (2), 021909 (2010).

    Article  CAS  Google Scholar 

  42. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305 (5686), 986–989 (2004).

    Article  CAS  Google Scholar 

  43. N. Li, N.A. Mara, J. Wang, P. Dickerson, J.Y. Huang, and A. Misra. Ex situ and in situ measurements of the shear strength of interfaces in metallic multilayers. Scr. Mater. 67 (5), 479–482 (2012).

    Article  CAS  Google Scholar 

  44. P. Wagner, O. Engler, and K. Lücke: Formation of Cu-type shear bands and their influence on deformation and texture of rolled fcc 112<111> single crystals. Acta Metall. Mater. 43, 3799 (1995).

    Article  CAS  Google Scholar 

  45. S. Mahesh, C.N. Tomé, R.J. McCabe, G.C. Kaschner, I.J. Beyerlein, and A. Misra: Application of a substructure-based hardening model to copper under loading path changes. Metall. Mater. Trans. A 35, 3763–3774 (2004).

    Article  Google Scholar 

  46. I.J. Beyerlein, D.J. Alexander, and C.N. Tomé: Plastic anisotropy in aluminum and copper prestrained by equal channel angular extrusion (ECAE). J. Mater. Sci. 42, 1733–1750 (2007).

    Article  CAS  Google Scholar 

  47. G.G. Yapici, I.J. Beyerlein, I. Karaman, and C.N. Tomé: Tension-compression asymmetry in severely deformed pure copper. Acta Mater. 55, 4603–4613 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Crystal plasticity modeling, ARB synthesis, EBSD-based characterization and nanomechanical testing were supported by a Los Alamos National Laboratory Directed Research and Development (LDRD) Project DR20110029. Atomic scale simulation was supported by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. 2008LANL1026. TN was supported by the Department of Defense (DoD) through the National Defense Science &amp; Engineering Graduate Fellowship (NDSEG) Program. TMP and IJB wish to acknowledge support for mechanical testing by the UC Lab Fees Research Program No. UCD-12-0045.15. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene J. Beyerlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyerlein, I.J., Mara, N.A., Carpenter, J.S. et al. Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation. Journal of Materials Research 28, 1799–1812 (2013). https://doi.org/10.1557/jmr.2013.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.21

Navigation