Skip to main content
Log in

Comparison of structure and electrochemical properties for PANI/TiO2/G and PANI/G composites synthesized by mechanochemical route

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Polyaniline/nano titanium dioxide/graphene nanoplatelet (PANI/TiO2/G) composite was synthesized by mechanochemical route. The structure and morphology of the composite were characterized by Fourier transform infrared spectra, ultraviolet-visible absorption spectra, x-ray diffraction and transmission electron microscopy. The electrochemical performances of the composite were investigated by galvanostatic charge-discharge, cyclic voltammetry, cycling stability and electrochemical impedance spectroscopy. The structure and properties of PANI/TiO2/G composite were compared with that of polyaniline/ graphene nanoplatelet (PANI/G) composite prepared under the same polymerization conditions. After comparative analysis with PANI/G, the effects of the nano titanium dioxide (TiO2) on the structural and physicochemical properties of the PANI/G have been discussed in depth. The comparison suggested that the PANI/TiO2/G composite has higher oxidation degree and lower crystallinity than PANI/G due to the addition of nano-TiO2. Morphology studies showed that PANI and nano-TiO2 particles were both observed on the bent and flat surfaces of graphene nanoplatelet in the PANI/TiO2/G composite. The electrochemical tests showed that the PANI/TiO2/G composite displayed a higher electrochemical activity with specific capacitance of 516 F/g (3 mA/cm2) and better cycle stability than PANI/G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.E. Conway: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer Inc., Kluwer Academic/Plenum Publishers, New York, NY, 1999), p. 736.

    Book  Google Scholar 

  2. X.H. Zhou, L.F. Li, S.M. Dong, X. Chen, P.X. Han, H.X. Xu, J.H. Yao, C.Q. Shang, Z.H. Liu, and G.L. Cui: A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material. J. Solid State Electrochem. 16, 877 (2012).

    Article  CAS  Google Scholar 

  3. M.J. Bleda-Martínez, E. Morallón, and D. Cazorla-Amorós: Polyaniline/porous carbon electrodes by chemical polymerization: Effect of carbon surface chemistry. Electrochim. Acta 52, 4962 (2007).

    Article  CAS  Google Scholar 

  4. L. Li, E. Liu, J. Li, Y. Yang, H. Shen, Z. Huang, X. Xiang, and W. Li: A doped activated carbon prepared from polyaniline for high performance supercapacitors. J. Power Sources 195, 1516 (2010).

    Article  CAS  Google Scholar 

  5. Q. Wang, J.L. Li, F. Gao, W.S. Oli, K.Z. Wu, and X.D. Wang: Activated carbon coated with polyaniline as an electrode material in supercapacitors. New Carbon Mater. 23, 275 (2008).

    Article  Google Scholar 

  6. K. Wang, J.Y. Huang, and Z.X. Wei: Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 114, 8062 (2010).

    Article  CAS  Google Scholar 

  7. H-H. Chang, C-K. Chang, Y-C. Tsai, and C-S. Liao: Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon 50, 2331 (2012).

    Article  CAS  Google Scholar 

  8. S.R.P. Gnanakan, M. Rajasekhar, and A. Subramania: Synthesis of polythiophene nanoparticles by surfactant-assisted dilute polymerization method for high performance redox supercapacitors. Int. J. Electrochem. Sci. 4, 1289 (2009).

    CAS  Google Scholar 

  9. H. Zhou, H. Chen, S. Luo, G. Lu, W. Wei, and Y. Kuang: The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. J. Solid State Electrochem. 9, 574 (2005).

    Article  CAS  Google Scholar 

  10. D-W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z-S. Wu, I. Gentle, G.Q. Lu, and H-M. Cheng: Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3, 1745 (2009).

    Article  CAS  Google Scholar 

  11. H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang: Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun. 11, 1158 (2009).

    Article  CAS  Google Scholar 

  12. L-Z. Fan, Y-S. Hu, J. Maier, P. Adelhelm, B. Smarsly, and M. Antonietti: High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv. Mater. 17, 3083 (2007).

    CAS  Google Scholar 

  13. X. Du, H-Y. Liu, G. Cai, Y-W. Mai, and A. Baji: Use of facile mechanochemical method to functionalize carbon nanofibers with nanostructured polyaniline and their electrochemical capacitance. Nanoscale Res. Lett. 7, 111 (2012).

    Article  CAS  Google Scholar 

  14. S.R. Sivakkumar, W.J. Kim, J-A. Choi, D.R. MacFarlane, M. Forsyth, and D-W. Kim: Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J. Power Sources 171, 1062 (2007).

    Article  CAS  Google Scholar 

  15. G-M. Zhou, D-W. Wang, F. Li, L-L. Zhang, Z. Weng, and H-M. Cheng: The effect of carbon particle morphology on the electrochemical properties of nanocarbon/polyaniline composites in supercapacitors. New Carbon Mater. 26, 180 (2011).

    Article  CAS  Google Scholar 

  16. Q. Hao, H. Wang, X. Yang, L. Lu, and X. Wang: Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties. Nano Res. 4, 323 (2011).

    Article  CAS  Google Scholar 

  17. N.T. Tung, T.V. Khai, M. Jeon, Y.J. Lee, H. Chung, J-H. Bang, and D. Sohn: Preparation and characterization of nanocomposite based on polyaniline and graphene nanosheets. Macromol. Res. 19, 203 (2011).

    Article  CAS  Google Scholar 

  18. K. Zhang, L.L. Zhang, X.S. Zhao, and J. Wu: Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22, 1392 (2010).

    Article  CAS  Google Scholar 

  19. C-F. Zhou, X-S. Du, Z. Liu, S.P. Ringer, and Y-W. Mai: Solid phase mechanochemical synthesis of polyaniline branched nanofibers. Synth. Met. 159, 1302 (2009).

    Article  CAS  Google Scholar 

  20. O.Y. Posudievsky, O.A. Goncharuk, R. Barillé, and V.D. Pokhodenko: Structure–property relationship in mechanochemically prepared polyaniline. Synth. Met. 160, 462 (2010).

    Article  CAS  Google Scholar 

  21. T. Abdiryim, X-G. Zhang, and R. Jamal: Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Mater. Chem. Phys. 90, 367 (2005).

    Article  CAS  Google Scholar 

  22. I. Bekri-Abbes and E. Srasra: Investigation of structure and conductivity properties of polyaniline synthesized by solid–solid reaction. J. Polym. Res. 18, 659 (2011).

    Article  CAS  Google Scholar 

  23. S. Palaniappan: Chemical and electrochemical polymerization of aniline using tartaric acid. Eur. Polym. J. 37, 975 (2001).

    Article  CAS  Google Scholar 

  24. S. Bhadra, N.K. Singha, and D. Khastgir: Polyaniline by new miniemulsion polymerization and the effect of reducing agent on conductivity. Synth. Met. 156, 1148 (2006).

    Article  CAS  Google Scholar 

  25. Y-F. Huang and C-W. Lin: Facile synthesis and morphology control of graphene oxide/polyaniline nanocomposites via in-situ polymerization process. Polymer 53, 2574 (2012).

    Article  CAS  Google Scholar 

  26. S-T. Yang, Y. Ishikawa, H. Itoh, and Q. Feng: Fabrication and characterization of core/shell structured TiO2/polyaniline nanocomposite. J. Colloid Interface Sci. 356, 734 (2011).

    Article  CAS  Google Scholar 

  27. Y. He: A novel emulsion route to sub-micrometer polyaniline/nano-ZnO composite fibers. Appl. Surf. Sci. 249, 1 (2005).

    Article  CAS  Google Scholar 

  28. M. Nagaraja, J. Pattar, N. Shashank, J. Manjanna, Y. Kamada, K. Rajanna, and H.M. Mahesh: Electrical, structural and magnetic properties of polyaniline/pTSA-TiO2 nanocomposites. Synth. Met. 159, 718 (2009).

    Article  CAS  Google Scholar 

  29. X. Li, G. Wang, X. Li, and D. Lu: Surface properties of polyaniline/nano-TiO2 composites. Appl. Surf. Sci. 229, 395 (2004).

    Article  CAS  Google Scholar 

  30. H. Xia and Q. Wang: Ultrasonic irradiation: A novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem. Mater. 14, 2158 (2002).

    Article  CAS  Google Scholar 

  31. A. Katoch, M. Burkhart, T. Hwang, and S-S. Kim: Synthesis of polyaniline/TiO2 hybrid nanoplates via a sol–gel chemical method. Chem. Eng. J. 192, 262 (2012).

    Article  CAS  Google Scholar 

  32. S. Bhadra, S. Chattopadhyay, N.K. Singha, and D. Khastgir: Improvement of conductivity of electrochemically synthesized polyaniline. J. Appl. Polym. Sci. 108, 57 (2008).

    Article  CAS  Google Scholar 

  33. X. Li, D. Wang, G. Cheng, Q. Luo, J. An, and Y. Wang: Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl. Catal., B 81, 267 (2008).

    Article  CAS  Google Scholar 

  34. J.X. Huang, J.A. Moore, J.H. Acquaye, and R.B. Kaner: Mechanochemical route to the conducting polymer polyaniline. Macromolecules 38, 317 (2005).

    Article  CAS  Google Scholar 

  35. S.E. Bourdo, B.A. Warford, and V. Tito: Electrical and thermal properties of graphite/polyaniline composites. J. Solid State Chem. 196, 309 (2012).

    Article  CAS  Google Scholar 

  36. H.K. Chaudhari and D.S. Kelkar: Investigation of structure and electrical conductivity in doped polyaniline. Polym. Int. 42, 380 (1997).

    Article  CAS  Google Scholar 

  37. N.R. Chiou and A.J. Epstein: Polyaniline nanofibers prepared by dilute polymerization. Adv. Mater. 17, 1679 (2005).

    Article  CAS  Google Scholar 

  38. S.R. Dhakate, N. Chauhan, S. Sharma, J. Tawale, S. Singh, P.D. Sahare, and R.B. Mathur: An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon 49, 1946 (2011).

    Article  CAS  Google Scholar 

  39. H. Su, T. Wang, S. Zhang, J. Song, C. Mao, H. Niu, B. Jin, J. Wu, and Y. Tian: Facile synthesis of polyaniline/TiO2/graphene oxide composite for high performance supercapacitors. Solid State Sci. 14, 677 (2012).

    Article  CAS  Google Scholar 

  40. Y-G. Wang, H-Q. Li, and Y.Y. Xia: Ordered whisker-like polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 18, 2619 (2006).

    Article  CAS  Google Scholar 

  41. H.Y. Mi, X.G. Zhang, S.Y. An, X.G. Ye, and S.D. Yang: Microwave-assisted synthesis and electrochemical capacitance of polyaniline/multi-wall carbon nanotubes composite. Electrochem. Commun. 9, 2859 (2007).

    Article  CAS  Google Scholar 

  42. X. Lu, H. Dou, S. Yang, L. Hao, L. Zhang, L. Shen, F. Zhang, and X. Zhang: Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film. Electrochim. Acta 56, 9224 (2011).

    Article  CAS  Google Scholar 

  43. D.S. Dhawale, A. Vinu, and C.D. Lokhande: Stable nanostructured polyaniline electrode for supercapacitor application. Electrochim. Acta 56, 9482 (2011).

    Article  CAS  Google Scholar 

  44. J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, and F. Wei: Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 195, 3041 (2010).

    Article  CAS  Google Scholar 

  45. H.Y. Mi, X.G. Zhang, X.G. Ye, and S.D. Yang: Preparation and enhanced capacitance of core–shell polypyrrole/polyaniline composite electrode for supercapacitors. J. Power Sources 176, 403 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from National Natural Science Foundation of China (Grant Nos. 20964004 and 21064007) and Xinjiang University-Institution cooperation Project (Grant No. XJDX1108-2012-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruxangul Jamal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamal, R., Shao, W., Xu, F. et al. Comparison of structure and electrochemical properties for PANI/TiO2/G and PANI/G composites synthesized by mechanochemical route. Journal of Materials Research 28, 832–839 (2013). https://doi.org/10.1557/jmr.2013.23

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.23

Navigation