Skip to main content
Log in

Deformation mechanisms of a ZrTiAlV alloy with two ductile phases

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Deformation mechanisms of a ZrTiAlV alloy with two ductile phases including a hexagonal close-packed (hcp) structure phase were investigated. A ZrTiAlV alloy was prepared via smelting, breakdown, forging, and suitable heat treatments. X-ray diffraction results show that the proposed ZrTiAlV alloy has two ductile phase structures, namely, hcp structure α-phase and bcc (body-centered cubic) structure β-phase. Scanning electron microscopy (SEM) results show that the plastic deformation of the examined ZrTiAlV alloy starts from the α-phase. Transmission electron microscopy (TEM) analysis shows that only dislocation slips can be found near fractured areas, and the main slip plane in the α-phase is the (0001) lattice plane. Both of the SEM and TEM results show the inexistence of deformation twin in the examined ZrTiAlV alloy including a hcp structure α-phase. Reasons for the abnormal deformation behavior of the hcp structure α-phase are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. A.P. Zhilyaev, I. Sabirov, G. González-Doncel, J. Molina-Aldareguía, B. Srinivasarao, and M.T. Pérez-Prado: Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions. Mater. Sci. Eng., A 528, 3496 (2011).

    Article  Google Scholar 

  2. H.C. Hsu, S.C. Wu, S.K. Hsu, Y.C. Sung, and W.F. Ho: Effects of heat treatments on the structure and mechanical properties of Zr–30Ti alloys. Mater. Charact. 62, 157 (2011).

    Article  CAS  Google Scholar 

  3. Suyalatu, N. Nomura, K. Oya, Y. Tanaka, R. Kondo, H. Doi, Y. Tsutsumi, and T. Hanawa: Microstructure and magnetic susceptibility of as-cast Zr–Mo alloys. Acta Biomater. 6, 1033 (2010).

    Article  CAS  Google Scholar 

  4. Y. Han, L. Zhang, J. Lu, and W.T. Zhang: Thermal stability and corrosion resistance of nanocrystallized zirconium formed by surface mechanical attrition treatment. J. Mater. Res. 24, 3136 (2009).

    Article  CAS  Google Scholar 

  5. Y.H. Li, W. Zhang, C. Dong, J.B. Qiang, A. Makino, M. Fukuhara, and A. Inoue: Glass-forming ability and mechanical properties of Zr75-xNi25Alx bulk glassy alloys. J. Mater. Res. 26, 533 (2011).

    Article  CAS  Google Scholar 

  6. X.D. Wang, L. Yang, J.Z. Jiang, K. Saksl, H. Franz, H-J. Fecht, Y.G. Liu, and H.S. Xian: Enhancement of plasticity in Zr-based bulk metallic glasses. J. Mater. Res. 22, 2454 (2007).

    Article  CAS  Google Scholar 

  7. S.X. Liang, M.Z. Ma, R. Jing, X.Y. Zhang, and R.P. Liu: Microstructure and mechanical properties of hot-rolled ZrTiAlV alloys. Mater. Sci. Eng., A 532, 1 (2012).

    Article  CAS  Google Scholar 

  8. S.X. Liang, M.Z. Ma, R. Jing, Y.K. Zhou, Q. Jing, and R.P. Liu: Preparation of the ZrTiAlV alloy with ultra-high strength and good ductility. Mater. Sci. Eng., A 539, 42 (2012).

    Article  CAS  Google Scholar 

  9. S.X. Liang, M.Z. Ma, R. Jing, and R.P. Liu: Structural evolution and mechanical properties of heat treated Zr-45Ti-5Al-3V alloy. Mater. Sci. Eng., A 541, 67 (2012).

    Article  CAS  Google Scholar 

  10. Y.T. Zhu, X.Z. Liao, and X.L. Wu: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).

    Article  CAS  Google Scholar 

  11. X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, and D.V. Gunderou: Deformation twining in nanocrystalline copper at room temperature and low strain rate. Appl. Phys. Lett. 84, 592 (2004).

    Article  CAS  Google Scholar 

  12. N. Hansen and B. Ralph: The strain and grain size dependence of the flow stress of copper. Acta Metall. 30, 411 (1982).

    Article  CAS  Google Scholar 

  13. O. Johari and G. Thomas: Substructures in explosively deformed Cu and Cu-Al alloys. Acta Metall. 12, 1153 (1964).

    Article  CAS  Google Scholar 

  14. X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, and D.V. Gunderov: Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. J. Appl. Phys. 96, 636 (2004).

    Article  CAS  Google Scholar 

  15. X.L. Wu, X.Z. Liao, S.G. Srinivasan, F. Zhou, E.J. Lavernia, R.Z. Valiev, and Y.T. Zhu: New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys. Rev. Lett. 100, 095701 (2008).

    Article  CAS  Google Scholar 

  16. R. Kaibyshev, F. Musin, E. Avtokratova, and Y. Motohashi: Deformation behavior of a modified 5083 aluminum alloy. Mater. Sci. Eng., A. 392, 373 (2005).

    Article  Google Scholar 

  17. Y. Ivanisenko, L. Kurmanaeva, J. Weissmueller, K. Yang, J. Markmann, H. Rösner, T. Scherer, and H.J. Fecht: Deformation mechanisms in nanocrystalline palladium at large strains. Acta Mater. 57, 3391 (2009).

    Article  CAS  Google Scholar 

  18. S. Nemat-Nasser, W.G. Guo, and J.Y. Cheng: Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater. 47, 3705 (1999).

    Article  CAS  Google Scholar 

  19. N. Stanford, K. Sotoudeh, and P.S. Bate: Deformation mechanisms and plastic anisotropy in magnesium alloy AZ31. Acta Mater. 59, 4866 (2011).

    Article  CAS  Google Scholar 

  20. M.S. Dargusch, M.J. Bermingham, S.D. McDonald, and D.H. StJohn: Effects of boron on microstructure in cast zirconium alloys. J. Mater. Res. 25, 1695 (2010).

    Article  CAS  Google Scholar 

  21. Y.M. Oh, Y.H. Jeong, K.J. Lee, and S.J. Kim: Effect of various alloying elements on the martensitic transformation in Zr–0.8 Sn alloy. J. Alloys Compd. 307, 3 (2000).

    Article  Google Scholar 

  22. S. Cai, M.R. Daymond, and R.A. Holt: Modeling the room temperature deformation of a two-phase zirconium alloy. Acta Mater. 57, 407 (2009).

    Article  CAS  Google Scholar 

  23. J.M. Manero, F.J. Gil, and J.A. Planell: Deformation mechanisms of Ti–6Al–4V alloy with a martensitic microstructure subjected to oligocyclic fatigue. Acta Mater. 48, 3353 (2000).

    Article  CAS  Google Scholar 

  24. Y.B. Wang, M. Louie, Y. Cao, X.Z. Liao, H.J. Li, S.P. Ringer, and Y.T. Zhu: High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy. Scr. Mater. 62, 214 (2010).

    Article  CAS  Google Scholar 

  25. N.P. Gurao, R. Kapoor, and S. Suwas: Deformation behaviour of commercially pure titanium at extreme strain rates. Acta Mater. 59, 3431 (2011).

    Article  CAS  Google Scholar 

  26. R.J. Mccabe, G. Proust, E.K. Cerreta, and A. Misra: Quantitative analysis of deformation twinning in zirconium. Int. J. Plast. 25, 454 (2009).

    Article  CAS  Google Scholar 

  27. R. Brenner, J.L. Béchade, O. Castelnau, and B. Bacroix: Thermal creep of Zr–Nb1%–O alloys: Experimental analysis and micromechanical modelling. J. Nucl. Mater. 305, 175 (2002).

    Article  CAS  Google Scholar 

  28. C. Leyens and M. Peters: Titanium and Titanium Alloys-Fundamentals and Applications, 1st ed. (betz-druck GmbH, Darmstadt, 2003).

    Book  Google Scholar 

  29. J.Z. Liu: Nuclear Structural Materials, 1st ed. (Chemical Industry Press, Beijing, 2007).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the SKPBRC (Grant No. 2013CB733000/2010CB731600), NSFC (Grant No. 51121061/51171160/51171163), and DFME of China (Grant No. 20101333110004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shunxing Liang or Mingzhen Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, S., Yin, L., Jing, R. et al. Deformation mechanisms of a ZrTiAlV alloy with two ductile phases. Journal of Materials Research 28, 2715–2719 (2013). https://doi.org/10.1557/jmr.2013.251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.251

Navigation