Skip to main content
Log in

Indentation-induced delamination of plasma-enhanced chemical vapor deposition silicon nitride film on gallium arsenide substrate

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation was performed on amorphous silicon nitride films of different thicknesses deposited on gallium arsenide (GaAs) (001) substrates using a conical indenter. Both “pop-in” and ‘pop-out’ were observed from the load-displacement curves when the indentation load exceeded a critical value. Pop-in occurring during loading is associated with plane-slip in the GaAs substrate, and pop-out during unloading is attributed to the interfacial delamination between the film and the substrate. Finite element modeling (FEM) was used to analyze the stress evolution during unloading. The FEM results showed that the stress at the interface evolved from compressive to tensile status during the withdrawal of indentation load, and the interfacial debonding was induced at a critical tensile stress, which is consistent with the pop-out observed. A deformation model for interpreting the pop-in and pop-out events is thereby proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

References

  1. F.W. Smith, H.Q. Le, V. Diadiuk, M.A. Hollis, A.R. Calawa, S. Gupta, M. Frankel, D.R. Dykaar, G.A. Mourou, and T.Y. Hsiang: Picosecond GaAs-based photoconductive optoelectronic detectors. Appl. Phys. Lett. 54, 890 (1989).

    Article  CAS  Google Scholar 

  2. D.K.W. Lam and R.I. Macdonald: GaAs optoelectronic mixer operation at 4.5 GHz. IEEE Trans. Electron Devices 31, 1766 (1984).

    Article  Google Scholar 

  3. Y. Saito, T. Isozaki, A. Masuda, K. Fukumoto, M. Chosa, T. Ito, C.E. Bauer, A. Inspektor, and E.J. Oles: Adhesion strength of diamond film on cemented carbide insert. Diamond Relat. Mater. 2, 1391 (1993).

    Article  CAS  Google Scholar 

  4. J. Yota: Interlevel dielectric processes using PECVD silicon nitride, polyimide, and polybenzoxazole for GaAs HBT technology. J. Electrochem. Soc. 156, G173 (2009).

    Article  CAS  Google Scholar 

  5. I. Hallakoun, I. Toledo, J. Kaplun, G. Bunin, M. Leibovitch, and Y. Shapira: Critical dimension improvement of plasma enhanced chemical vapor deposition silicon nitride thin films in GaAs devices. Mater. Sci. Eng., B 102, 352 (2003).

    Article  Google Scholar 

  6. M. Gioti, S. Logothetidis, and C. Charitidis: Stress relaxation and stability in thick amorphous carbon films deposited in layer structure. Appl. Phys. Lett. 73, 184 (1998).

    Article  CAS  Google Scholar 

  7. S-Y. Chang, H-C. Tsai, J-Y. Chang, S-J. Lin, and Y-S. Chang: Analyses of interface adhesion between porous SiOCH low-k film and SiCN layers by nanoindentation and nanoscratch tests. Thin Solid Films 516, 5334 (2008).

    Article  CAS  Google Scholar 

  8. E.Y. Chang, G.T. Cibuzar, J.M. Vanhove, R.M. Nagarajan, and K.P. Pande: GaAs devices passivation using sputtered silicon nitride. Appl. Phys. Lett. 53, 1638 (1988).

    Article  CAS  Google Scholar 

  9. A. Jaouad, V. Aimez, and C. Aktik: GaAs passivation by low-frequency plasma- enhanced chemical vapor deposition of silicon nitride. Electron. Lett. 40, 1024 (2004).

    Article  CAS  Google Scholar 

  10. K.B. Yeap, K.Y. Zeng, H.Y. Jiang, L. Shen, and D.Z. Chi: Determining interfacial properties of submicron low-k films on Si substrate by using wedge indentation technique. J. Appl. Phys. 101, 123531 (2007).

    Article  Google Scholar 

  11. R.K. Singh, M.T. Tilbrook, Z.H. Xie, A. Bendavid, P.J. Martin, P. Munroe, and M. Hoffman: Contact damage evolution in diamond-like carbon coatings on ductile substrates. J. Mater. Res. 23, 27 (2008).

    Article  Google Scholar 

  12. S.J. Bull: Failure modes in scratch adhesion testing. Surf. Coat. Technol. 50, 25 (1991).

    Article  CAS  Google Scholar 

  13. A.J. Perry: Scratch adhesion testing of hard coatings. Thin Solid Films 107, 167 (1983).

    Article  CAS  Google Scholar 

  14. J.J. Chen and S.J. Bull: Approaches to investigate delamination and interfacial toughness in coated systems: An overview. J. Phys. D: Appl. Phys. 44(3), 034001 (2011).

    Article  Google Scholar 

  15. A.A. Volinsky, N.R. Moody, and W.W. Gerberich: Interfacial toughness measurements for thin films on substrates. Acta Mater. 50, 441 (2002).

    Article  CAS  Google Scholar 

  16. S. Zhang, Y.S. Wang, X.T. Zeng, K.A. Khor, W.J. Weng, and D.E. Sun: Evaluation of adhesion strength and toughness of fluoridated hydroxyapatite coatings. Thin Solid Films 516, 5162 (2008).

    Article  CAS  Google Scholar 

  17. R. Jacobsson: Measurement of the adhesion of thin films. Thin Solid Films 34, 191 (1976).

    Article  CAS  Google Scholar 

  18. D. Hegemann, H. Brunner, and C. Oehr: Plasma treatment of polymers for surface and adhesion improvement. Nucl. Instrum. Methods 208, 281 (2003).

    Article  CAS  Google Scholar 

  19. J. Kim, K.S. Kim, and Y.H. Kim: Mechanical effects in peel adhesion test. J. Adhes. Sci. Technol. 3, 175 (1989).

    Article  CAS  Google Scholar 

  20. R.H. Dauskardt, M. Lane, Q. Ma, and N. Krishna: Adhesion and debonding of multilayer thin film structures. Eng. Fract. Mech. 61, 141 (1998).

    Article  Google Scholar 

  21. C. Litteken, R. Dauskardt, T. Scherban, G. Xu, J. Leu, D. Gracias, and B. Sun: Interfacial adhesion of thin-film patterned interconnect structures. In Proceedings of the IEEE 2003 International, New York, 2003 (IEEE, New York, NY, 2003); p. 168.

    Google Scholar 

  22. M.P. DeBoer and W.W. Gerberich: Microwedge indentation of the thin film fine line. 1. Mech. Acta Mater. 44, 3169 (1996).

    Article  CAS  Google Scholar 

  23. M.P. DeBoer and W.W. Gerberich: Microwedge indentation of the thin film fine line. 2. Exp. Acta Mater. 44, 3177 (1996).

    Article  CAS  Google Scholar 

  24. S. Zhang and X.M. Zhang: Toughness evaluation of hard coatings and thin films. Thin Solid Films 520, 2375 (2012).

    Article  CAS  Google Scholar 

  25. H. Huang, K.J. Winchester, A. Suvorova, B.R. Lawn, Y. Liu, X.Z. Hu, J.M. Dell, and L. Faraone: Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Mater. Sci. Eng., A 435, 453 (2006).

    Article  Google Scholar 

  26. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  27. H. Huang, K. Winchester, Y. Liu, X.Z. Hu, C.A. Musca, J.M. Dell, and L. Faraone: Determination of mechanical properties of PECVD silicon nitride thin films for tunable MEMS Fabry-Perot optical filters. J. Micromech. Microeng. 15, 608 (2005).

    Article  CAS  Google Scholar 

  28. Y.G. Jung, B.R. Lawn, M. Martyniuk, H. Huang, and X.Z. Hu: Evaluation of elastic modulus and hardness of thin films by nanoindentation. J. Mater. Res. 19, 3076 (2004).

    Article  CAS  Google Scholar 

  29. A. Needleman: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. Trans. ASME 54, 525 (1987).

    Article  Google Scholar 

  30. ANSYS Academic Research Release 13.0, Help System, 4.13. Cohesive Zone Material Model, (ANSYS, Inc., 2007).

  31. H.H. Sheng Liu and Y. Gu: Deconvolution of mechanical properties of thin films from nanoindentation measurement via finite element optimization. Thin Solid Films 526, 183 (2012).

    Article  Google Scholar 

  32. E. Le Bourhis and G. Patriarche: Structure of nanoindentations in heavily n- and p-doped (001) GaAs. Acta Mater. 56(7), 1417 (2008).

    Article  CAS  Google Scholar 

  33. E. Le Bourhis and G. Patriarche: Structure of annealed nanoindentations in n- and p-doped (001)GaAs. J. Appl. Phys. 106, 123516 (2009).

    Article  Google Scholar 

  34. C.R. Taylor, A.P. Malshe, G. Salamo, R.N. Prince, L. Riester, and S.O. Cho: Characterization of ultra-low-load (mu N) nanoindents in GaAs(100) using a cube corner tip. Smart Mater. Struct. 14, 963 (2005).

    Article  CAS  Google Scholar 

  35. J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, and P. Munroe: Mechanical deformation of InP and GaAs by spherical indentation. Appl. Phys. Lett. 78, 3235 (2001).

    Article  CAS  Google Scholar 

  36. S.J. Lloyd, J.M. Molina-Aldareguia, and W.J. Clegg: Deformation under nanoindents in Si, Ge, and GaAs examined through transmission electron microscopy. J. Mater. Res. 16, 3347 (2001).

    Article  CAS  Google Scholar 

  37. S.V. Hainsworth, M.R. McGurk, and T.F. Page: The effect of coating cracking on the indentation response of thin hard-coated systems. Surf. Coat. Technol. 102, 97 (1998).

    Article  CAS  Google Scholar 

  38. J. Chen and S.J. Bull: Indentation fracture and toughness assessment for thin optical coatings on glass. J. Phys. D: Appl. Phys. 40, 5401 (2007).

    Article  CAS  Google Scholar 

  39. J. Chen and S.J. Bull: Finite element analysis of contact induced adhesion failure in multilayer coatings with weak interfaces. Thin Solid Films 517(13), 3704 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of WIN Semiconductors Co. and Australian Research Council (ARC). Mr. Dennis Williams and Dr. Jerome Wu are acknowledged for their valuable comments and TEM assistance. HH is financially supported by ARC under the Future Fellow Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, M., Xie, H., Huang, H. et al. Indentation-induced delamination of plasma-enhanced chemical vapor deposition silicon nitride film on gallium arsenide substrate. Journal of Materials Research 28, 1047–1055 (2013). https://doi.org/10.1557/jmr.2013.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.31

Navigation