Skip to main content
Log in

Characterizing interface dislocations by atomically informed Frank-Bilby theory

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Semicoherent interfaces containing discrete dislocations are more energetically favorable than those containing continuous distributions because of lower chemical energy. The classical Frank-Bilby theory provided a way to determine the interface Burgers vectors content but could not effectively predict the characteristics of discrete dislocations. Atomistic simulations provide insights into analyzing the characteristics of discrete dislocations but the analysis is often disturbed by the reaction of interface dislocations. By combining the classical Frank-Bilby theory and atomistic simulations, an atomically informed Frank-Bilby theory proposed in this work can overcome shortcomings in both the classic Frank-Bilby theory and atomistic simulations, and enable quantitative analysis of interface dislocations. The proposed method has been demonstrated via studying two typical dissimilar metallic interfaces. The results showed that Burgers vectors of interface dislocations can be well defined in a Commensurate/Coherent Dichromatic Pattern (CDP) and the Rotation CDP (RCDP) lattices. Most importantly, the CDP and RCDP lattices are not simply a geometric average of the two natural lattices, that is the lattice misfit and the relative twist take the nonequal partition of the misfit strain and the twist angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

References

  1. I.J. Beyerlein, N.A. Mara, J. Wang, J.S. Carpenter, S.J. Zheng, W.Z. Han, R.F. Zhang, K. Kang, T. Nizolek, and T.M. Pollock: Structure-property-functionality of bi-metal interfaces. JOM 64 (10), 1192 (2012).

    Article  CAS  Google Scholar 

  2. M.J. Demkowicz, J. Wang, and R.G. Hoagland: Interfaces between dissimilar crystalline solids, in Dislocations in Solids, Vol. 14, Chap. 83, edited by J.P. Hirth (Elsevier, Amsterdam, 2008); p. 141–207.

    Article  Google Scholar 

  3. N.Q. Vo, R.S. Averback, Y. Ashkenazy, P. Bellon, and J. Wang: Forced chemical mixing at Cu-Nb interfaces under severe plastic deformation. J. Mater. Res. 27 (12), 1621 (2012).

    Article  CAS  Google Scholar 

  4. J. Wang and A. Misra: An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).

    Article  CAS  Google Scholar 

  5. J. Wang, K. Kang, R.F. Zhang, S.J. Zheng, I.J. Beyerlein, and N. Mara: Structure and property of interfaces in ARB Cu/Nb laminated composites. JOM 64 (10), 1208 (2012).

    Article  CAS  Google Scholar 

  6. J.P. Hirth, R.C. Pond, R.G. Hoagland, X.Y. Liu, and J. Wang: Interface defects, reference spaces and the Frank-Bilby equation. Prog. Mater. Sci. (2012) http://dx.doi.org/10.1016/j.pmatsci.2012.10.002.

    Google Scholar 

  7. J. Wang, R.G. Hoagland, X.Y. Liu, and A. Misra: The influence of interface shear strength on the glide dislocation-interface interactions. Acta Mater. 59 (8), 3164 (2011).

    Article  CAS  Google Scholar 

  8. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra: Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces. Acta Mater. 56, 3109 (2008).

    Article  CAS  Google Scholar 

  9. J. Wang, A. Misra, and J.P. Hirth: Shear response of S3112 twin boundaries in face centered cubic metals. Phys. Rev. B 83, 064106 (2011).

    Article  CAS  Google Scholar 

  10. R.F. Zhang, J. Wang, I.J. Beyerlein, A. Misra, and T.C. Germann: Atomic-scale study of nucleation of dislocations from fcc-bcc interfaces. Acta Mater. 60 (6-7), 2855 (2012).

    Article  CAS  Google Scholar 

  11. S.J. Zheng, I.J. Beyerlein, J. Wang, J.S. Carpenter, W.Z. Han, and N.A. Mara: Deformation twinning mechanisms from bi-metal interfaces as revealed by in-situ straining in the TEM. Acta Mater. 60 (10), 5858 (2012).

    Article  CAS  Google Scholar 

  12. W.Z. Han, J.S. Carpenter, J. Wang, I.J. Beyerlein, and N.A. Mara: Atomic-level study of twin nucleation from face-centered-cubic/body-centered-cubic interfaces in nanolamellar composites. Appl. Phys. Lett. 100, 011911 (2012).

    Article  CAS  Google Scholar 

  13. R.F. Zhang, T.C. Germann, J. Wang, X-Y. Liu, and I.J. Beyerlein: Role of interface structure on the plastic response of Cu/Nb nanolaminates under shock compression: Non-equilibrium molecular dynamics simulations. Scr. Mater. 68 (2), 114 (2013).

    Article  CAS  Google Scholar 

  14. K. Kang, J. Wang, S.J. Zheng, and I.J. Beyerlein: Minimum energy structures faceted, incoherent interfaces. J. Appl. Phys. 112, 073501 (2012).

    Article  CAS  Google Scholar 

  15. R.F. Zhang, J. Wang, I.J. Beyerlein, and T.C. Germann: Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces. Scr. Mater. 65, 1022 (2011).

    Article  CAS  Google Scholar 

  16. F.C. Frank: Report of the Symposium on the Plastic Deformation of Crystalline Solids (Carnegie Institute of Technology, Pittsburgh, PA, 1950), p. 150.

    Google Scholar 

  17. B.A. Bilby: Report of the Conference on Defects in Crystalline Solids (Physical Soc, London; 1955), p. 124.

    Google Scholar 

  18. W. Bollmann: Crystal Defects and Crystalline Interfaces (Springer-erlag, Berlin, 1970).

    Book  Google Scholar 

  19. W. Bollmann: On the geometry of grain and phase boundaries I. General theory. Philos. Mag. 16, 363 (1967).

    Article  CAS  Google Scholar 

  20. W. Bollmann: On the geometry of grain and phase boundaries II. Applications of general theory. Philos. Mag. 16, 383 (1967).

    Article  CAS  Google Scholar 

  21. W. Bollmann: On the analysis of dislocation networks. Philos. Mag. 7, 1513 (1962).

    Article  Google Scholar 

  22. J.P. Hirth and J. Lothe: Theory of Dislocations (Wiley, New York, 1982).

    Google Scholar 

  23. R.C. Pond and J.P. Hirth, in: Solid State Physics, F. Seitz and D. Turnbull eds., Vol. 47; Academic Press, New York, NY, 1994, p. 287.

    Article  CAS  Google Scholar 

  24. A.P. Sutton and R.W. Balluffi: Interfaces in Crystalline Materials (Oxford University Press, Oxford, 1995).

    Google Scholar 

  25. N. Nakanishi: New aspects of martensitic transformation. Trans. JIM 17, 211 (1976).

    Article  Google Scholar 

  26. H. Gleiter: On the structure of grain boundaries in metals. Mater. Sci. Eng. 52, 91 (1982).

    Article  CAS  Google Scholar 

  27. P.J. Goodhew, T.P. Darby, and R.W. Balluffi: The structure of low angle <110> twist boundaries in gold. Scr. Metall. 10, 495 (1976).

    Article  CAS  Google Scholar 

  28. P. Kluge-Weiss and H. Gleiter: Electron microscopic observations on the structure of dislocations in interphase boundaries. Acta Metall. 26, 117 (1978).

    Article  CAS  Google Scholar 

  29. C.T. Forwood and L.M.C. Clarebrough: Electron Microscopy of Interfaces in Metals and Alloys (Adam Hilger, Bristol, England, 1991).

    Google Scholar 

  30. P.J. Goodhew: The relationship between structure and energy in grain boundaries, in ASM Materials Seminor on Grain Boundary Structure and Kinetics, Milwaukee, WI, September 15, 16, 1979, edited by P. Goodhew and R.W. Balluffi (American Society for Metals, Metals Park, OH, 1980), p. 155.

    Google Scholar 

  31. K. Kang, J. Wang, and I.J. Beyerlein: Atomic structure variations of mechanically stable fcc-bcc interfaces. J. Appl. Phys. 111 (5), 053531 (2012).

    Article  CAS  Google Scholar 

  32. M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth: Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).

    Article  CAS  Google Scholar 

  33. K.M. Knowles: The dislocation geometry of interphase boundaries. Philos. Mag. A 46, 951 (1982).

    Article  CAS  Google Scholar 

  34. X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D.H. Ping, and K. Hono: Solid state amorphization in cold drawn Cu/Nb wires. Acta Mater. 49, 389 (2001).

    Article  CAS  Google Scholar 

  35. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra: Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater. 56, 5685 (2008).

    Article  CAS  Google Scholar 

  36. R.A. Johnson and D.J. Oh: Analytic embedded atom method model for bcc metals. J. Mater. Res. 4, 1195 (1989).

    Article  CAS  Google Scholar 

  37. X.Y. Liu, R.G. Hoagland, J. Wang, T. C. Germann, and A. Misra: The influence of dilute heats of mixing on the atomic structures, defect energetics and mechanical properties of fcc-bcc interfaces. Acta Mater. 58, 4549 (2010).

    Article  CAS  Google Scholar 

  38. M.J. Demkowicz and R.G. Hoagland: Simulations of collision cascades in Cu-Nb layered composites using an eam interatomic potential. Int. J. Appl. Mech. 1, 421 (2009).

    Article  Google Scholar 

  39. J. Wang, R.G. Hoagland, and A. Misra: Phase transition and dislocation nucleation in Cu-Nb layered composites during physical vapor deposition. J. Mater. Res. 23 (4), 1009 (2008).

    Article  CAS  Google Scholar 

  40. J. Wang and H.C. Huang: Novel deformation mechanism of twinned nanowires. Appl. Phys. Lett. 88, 203112 (2006).

    Article  CAS  Google Scholar 

  41. J. Wang, H. Huang, S.V. Kesapragada, and D. Gall: Growth of Y-shaped nanorods through physical vapor deposition. Nano Lett. 5 (12), 2505 (2005).

    Article  CAS  Google Scholar 

  42. N.M. Ghoniem, S. Tong, and Z.L. Sun: Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformations. Phys. Rev. B 61, 913 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Grant No. 2008LANL1026. JW and IJB also thank the support provided by a Los Alamos National Laboratory Directed Research and Development project ER20110573 and DR20110029. CZZ thanks the support provided by CNLS at Los Alamos National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhang, R., Zhou, C. et al. Characterizing interface dislocations by atomically informed Frank-Bilby theory. Journal of Materials Research 28, 1646–1657 (2013). https://doi.org/10.1557/jmr.2013.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.34

Navigation