Skip to main content
Log in

New evidence for the formation and growth mechanism of the intermetallic phase formed at the Al/Fe interface

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To clarify the underlying mechanism of formation and growth of aluminum coating, the interface microstructures of as-prepared aluminum coating iron were investigated using various experimental methods. The liquid Al–Si, Al–Ge alloys were chosen as the dipping baths. In both cases, the total thickness of the reaction layer is controlled mainly by the well-known diffusion growth of η-Al5Fe2. The melt environment of the Al bath plays a decisive role in the formation and growth of the diffusion layer. The results show that Ge atoms could also decelerate reaction layer growth like Si atoms, which mainly restrain the diffusion of Al atoms. Meanwhile, Ge element represents an abnormal concentration gradient in the η-Al5Fe2 phase. The diverse growth behavior of the diffusion layer is attributed to the strong controlling role of the alloying element in Al baths based on the atomic diffusion and activity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
TABLE I
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

REFERENCES

  1. A. Szczepaniak, J.F. Fan, A. Kostka, and D. Raabe: On the correlation between thermal cycle and formation of intermetallic phases at the interface of laser-welded aluminum-steel overlap joints. Adv. Eng. Mater. 14, 464–472 (2012).

    Article  CAS  Google Scholar 

  2. N. Li, N.A. Mara, J. Wang, P. Dickerson, J.Y. Huang, and A. Misra: Ex situ and in situ measurements of the shear strength of interfaces in metallic multilayers. Scr. Mater. 67, 479–482 (2012).

    Article  CAS  Google Scholar 

  3. D.G. Li, Q. Wang, T. Liu, G.J. Li, and J.C. He: Growth of diffusion layers at liquid Al–solid Cu interface under uniform and gradient high magnetic field conditions. Mater. Chem. Phys. 117, 504–510 (2009).

    Article  CAS  Google Scholar 

  4. A.P. Savitskii: Diffusion interaction between two metals, one of which is in liquid state. Mater. Sci. Forum 575–578, 1477–1482 (2008).

    Article  Google Scholar 

  5. R.S. Coelho, A. Kostka, J.F. dos Santos, and A. Kaysser-Pyzalla: Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure. Mater. Sci. Eng., A 556, 175–183 (2012).

    Article  CAS  Google Scholar 

  6. H. Springer, A. Kostka, J.F. dos Santos, and D. Raabe: Influence of intermetallic phases and Kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys. Mater. Sci. Eng., A 528, 4630–4642 (2011).

    Article  Google Scholar 

  7. K. Bouche, F. Barbier, and A. Coulet: Intermetallic compound layer growth between solid iron and molten aluminium. Mater. Sci. Eng., A 249, 167–175 (1998).

    Article  Google Scholar 

  8. H.R. Shahverdi, M.R. Ghomashchi, S. Shabestari, and J. Hejazi: Microstructural analysis of interfacial reaction between molten aluminium and solid iron. J. Mater. Process. Technol. 124, 345–352 (2002).

    Article  CAS  Google Scholar 

  9. A. Bouayad, C. Gerometta, A. Belkebir, and A. Ambari: Kinetic interactions between solid iron and molten aluminium. Mater. Sci. Eng., A 363, 53–61 (2003).

    Article  Google Scholar 

  10. S. Kobayashi and T. Yakou: Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Mater. Sci. Eng., A 338, 44–53 (2002).

    Article  Google Scholar 

  11. G. Eggeler, W. Auer, and H. Kaesche: On the influence of silicon on the growth of the alloy layer during hot dip aluminizing. J. Mater. Sci. 21, 3348–3350 (1986).

    Article  CAS  Google Scholar 

  12. J. An, Y.B. Liu, M.Z. Zhang, and B. Yang: Effect of Si on the interfacial bonding strength of Al-Pb alloy strips and hot-dip aluminized steel sheets by hot rolling. J. Mater. Process. Technol. 120, 30–36 (2002).

    Article  CAS  Google Scholar 

  13. H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla, and G. Eggeler: On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys. Acta Mater. 59, 1586–1600 (2011).

    Article  CAS  Google Scholar 

  14. H. Springer: Fundamental research into the role of intermetallic phases in joining of aluminium alloys to steel. Ph. D. Thesis, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Bochum, 2011.

    Google Scholar 

  15. J.E. Nicholls: Hot-dipped aluminium coatings. Corr. Technol. 11, 16–21 (1964).

    CAS  Google Scholar 

  16. M.V. Akdeniz, A.O. Mekhrabov, and T. Yilmaz: The role of Si addition on the interfacial interaction in Fe-Al diffusion layer. Scr. Metall. Mater. 31, 1723–1728 (1994).

    Article  CAS  Google Scholar 

  17. M.V. Akdeniz and A.O. Mekhrabov: The effect of substitutional impurities on the evolution of Fe-Al diffusion layer. Acta Mater. 46, 1185–1192 (1998).

    Article  CAS  Google Scholar 

  18. Z.Q. Zheng, W.Q. Liu, Z.Q. Liao, S.P. Ringer, and G. Sha: Solute clustering and solute nanostructures in an Al–3.5Cu–0.4Mg–0.2Ge alloy. Acta Mater. 61, 3724–3734 (2013).

    Article  CAS  Google Scholar 

  19. H.R. Shahverdi, M.R. Ghomashchi, S. Shabestari, and J. Hejazi: Kinetics of interfacial reaction between solid iron and molten aluminium. J. Mater. Sci. 37, 1061–1066 (2002).

    Article  CAS  Google Scholar 

  20. K.A. Nazari and S.G. Shabestari: Effect of micro alloying elements on the interfacial reactions between molten aluminum alloy and tool steel. J. Alloys Compd. 478, 523–530 (2009).

    Article  CAS  Google Scholar 

  21. L.A. Jacome: Influence of alloying elements on the microstructure and mechanical properties of steel-aluminium-joints produced by metal arc joining with special focus on the intermetallic phase seam. Ph. D. Thesis, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Bochum, 2008.

    Google Scholar 

  22. J.L. Song, S.B. Lin, C.L. Yang, and C.L. Fan: Effects of Si additions on intermetallic compound layer of aluminum–steel TIG welding–brazing joint. J. Alloys Compd. 488, 217–222 (2009).

    Article  CAS  Google Scholar 

  23. P.D. Desai: Thermodynamic properties of selected binary aluminum alloy systems. J. Phys. Chem. Ref. Data 16, 109–124 (1987).

    Article  CAS  Google Scholar 

  24. A.K. Kurakin: Mechanism of the influence of silicon on the processes of the reaction diffusion of iron in aluminum. Phys. Met. Metall. 30, 108 (1970).

    Google Scholar 

  25. W.J. Cheng and C.J. Wang: Effect of silicon on the formation of intermetallic phases in aluminide coating on mild steel. Intermetallics 19, 1455–1460 (2011).

    Article  CAS  Google Scholar 

  26. Y. Du, J.C. Schuster, Z.K. Liu, R. Hu, P. Nash, and W. Sun: A thermodynamic description of the Al–Fe–Si system over the whole composition and temperature ranges via a hybrid approach of CALPHAD and key experiments. Intermetallics 16, 554–570 (2008).

    Article  CAS  Google Scholar 

  27. M.C.J. Marker, B. Skolyszewska-Kühberger, H.S. Effenberger, C. Schmetterer, and K.W. Richter: Phase equilibria and structural investigations in the system Al–Fe–Si. Intermetallics 19, 1919–1929 (2011).

    Article  CAS  Google Scholar 

  28. U. Burkhardt, Y. Grin, M. Ellner, and K. Peters: Structure refinement of the iron-aluminium phase with the approximate composition Fe2Al5. Acta Crystallogr., Sect. B: Struct. Sci. 50, 313–316 (1994).

    Article  Google Scholar 

  29. A. Bahadur and O.N. Mohanty: Structural studies of hot dip aluminized coatings on mild steel. Mater. Trans., JIM 32, 1053–1061 (1991).

    Article  CAS  Google Scholar 

  30. A. Hirata, Y. Mori, M. Ishimaru, and Y. Koyama: Role of the triclinic Al2Fe structure in the formation of the Al5Fe2-approximant. Philos. Mag. Lett. 88, 491–500 (2008).

    Article  CAS  Google Scholar 

  31. D. Naoi and M. Kajihara: Growth behavior of Fe2Al5 during reactive diffusion between Fe and Al at solid-state temperatures. Mater. Sci. Eng., A 459, 375–382 (2007).

    Article  Google Scholar 

  32. Y. Tanaka and M. Kajihara: Morphology of compounds formed by isothermal reactive diffusion between solid Fe and liquid Al. Mater. Trans., JIM 50, 2212–2220 (2009).

    Article  CAS  Google Scholar 

  33. M. Kajihara: Analysis of kinetics of reactive diffusion in a hypothetical binary system. Acta Mater. 52, 1193–1200 (2004).

    Article  CAS  Google Scholar 

  34. M. Kajihara: Quantitative evaluation of interdiffusion in Fe2Al5 during reactive diffusion in the binary Fe-Al system. Mater. Trans., JIM 47, 1480–1484 (2006).

    Article  CAS  Google Scholar 

  35. A. Portavoce and G. Treglia: Physical origin of thickness-controlled sequential phase formation during reactive diffusion: Atomistic modeling. Phys. Rev. B 82, 205431 (2010).

    Article  Google Scholar 

  36. H.L. Wang, Z.B. Wang, and K. Lu: Enhanced reactive diffusion of Zn in a nanostructured Fe produced by means of surface mechanical attrition treatment. Acta Mater. 60, 1762–1770 (2012).

    Article  CAS  Google Scholar 

  37. M. Zhe, O. Dezellus, B. Gardiola, M. Braccini, and J.C. Viala: Chemical changes at the interface between low carbon steel and an Al-Si alloy during solution heat treatment. J. Phase Equilib. Diffus. 32, 486–497 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Xiangzhen Zhu, Tianyi Kou, Chi Zhang, Yaokun Pan, and Shulong Ye for technical assistance and enlightening discussions. The work was supported by the National Natural Science Foundation of China (Grant Nos. 51371107 and 51241007) and Science and Technology Development Project of Shandong Province (Grant No. 2013GGX10217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufang Bian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Bian, X., Li, Y. et al. New evidence for the formation and growth mechanism of the intermetallic phase formed at the Al/Fe interface. Journal of Materials Research 28, 3279–3287 (2013). https://doi.org/10.1557/jmr.2013.345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.345

Navigation