Skip to main content
Log in

Temperature-dependent electrical properties of graphene nanoplatelets film dropped on flexible substrates

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The fabrication of a temperature sensor based on graphene nanoplatelets (GNPs) is reported. A preheat process was carried out and the micrographs of both original and preheat-treated GNPs are observed and compared. Nonlinear temperature variation of resistance is observed and humidity interference is found to be negligible. Region of 10–60 °C (the linear region) is selected as the sensor range and further studied. High sensitivity of GNPs can be seen and the temperature coefficient of resistance (TCR) of 0.0371 is calculated, higher than that of multiwall carbon nanotubes (MWCNTs) and many other materials reported in references. Great repeatability and small hysteresis are obtained. The time constant of the GNPs film is about 5 s, much shorter than that of MWCNTs film. The result suggests that GNPs have potential applications for use in highly sensitive and fast-response temperature sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. J.G. Martínez, T.F. Otero, C. Bosch-Navarro, E. Coronado, C. Martí-Gastaldo, and H. Prima-Garcia: Graphene electrochemical responses sense surroundings. Electrochimi. Acta 81, 49 (2012).

    Article  Google Scholar 

  2. U. Yogeswaran and S.M. Chen: A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8, 290–313 (2008).

    Article  CAS  Google Scholar 

  3. P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, and H. Zhu: Small temperature coefficient of resistivity of graphene/graphene oxide hybrid membranes. ACS Appl. Mater. Interfaces 5, 9563 (2013).

    Article  CAS  Google Scholar 

  4. H.A. Schafft and J.S. Suehle: The measurement, use and interpretation of the temperature coefficient of resistance of metallizations. Solid-State Electron. 35, 403 (1992).

    Article  CAS  Google Scholar 

  5. Y.T. Kim: Achievement of zero temperature coefficient of resistance with RuOx thin film resistors. Appl. Phys. Lett. 70, 209 (1997).

    Article  CAS  Google Scholar 

  6. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, and T. Sakurai: Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. U S A 102, 12321 (2005).

    Article  CAS  Google Scholar 

  7. K. Takei, T. Takahashi, J.C. Ho, H. Ko, A.G. Gillies, P.W. Leu, and A. Javey: Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9, 821 (2010).

    Article  CAS  Google Scholar 

  8. Y. Hou, D. Wang, X.M. Zhang, H. Zhao, J.W. Zha, and Z.M. Dang: Positive piezoresistive behavior of electrically conductive alkyl-functionalized graphene/polydimethylsilicone nanocomposites. J. Mater. Chem., C 1, 515 (2013).

    Article  CAS  Google Scholar 

  9. C. Mattmann, F. Clemens, and G. Tröster: Sensor for measuring strain in textile. Sensors 8, 3719 (2008).

    Article  CAS  Google Scholar 

  10. D.J. Cohen, D. Mitra, K. Peterson, and M.M. Maharbiz: A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 12, 1821 (2012).

    Article  CAS  Google Scholar 

  11. D. Kong, L.T. Le, Y. Li, J.L. Zunino, and W. Lee: Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir 28, 13467 (2012).

    Article  CAS  Google Scholar 

  12. C. Lee, X. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  13. J.H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206 (2008).

    Article  CAS  Google Scholar 

  14. E. Watanabe, S. Yamaguchi, J. Nakamura, and A. Natori: Ballistic thermal conductance of electrons in graphene ribbons. Phys. Rev. B 80, 085404 (2009).

    Article  Google Scholar 

  15. J.W. Jiang, J.S. Wang, and B. Li: Thermal conductance of graphene and dimerite. Phys. Rev. B 79, 205418 (2009).

    Article  Google Scholar 

  16. K. Saito, J. Nakamura, and A. Natori: Ballistic thermal conductance of a graphene sheet. Phys. Rev. B 76, 115409 (2007).

    Article  Google Scholar 

  17. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).

    Article  CAS  Google Scholar 

  18. A.K. Geim: Graphene: Status and prospects. Science 324, 1530 (2009).

    Article  CAS  Google Scholar 

  19. W. Choi, I. Lahiri, R. Seelaboyina, and Y.S. Kang: Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci. 35, 52 (2010).

    Article  CAS  Google Scholar 

  20. H. Wu and L.T. Drzal: Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 50, 1135 (2012).

    Article  CAS  Google Scholar 

  21. P. Yan, Q. Tang, A. Deng, and J. Li: Ultrasensitive detection of clenbuterol by quantum dots based electrochemiluminescent immunesensor using gold nanoparticles as substrate and electron transport accelerator. Sens. Actuators, B: Chemical 191, 508 (2014).

    Article  CAS  Google Scholar 

  22. M. Mohiuddin and S.V. Hoa: Temperature dependent electrical conductivity of CNT–PEEK composites. Compos. Sci. Technol. 72, 21 (2011).

    Article  CAS  Google Scholar 

  23. H.C. Neitzert, L. Vertuccio, and A. Sorrentino: Epoxy/MWCNT composite as temperature sensor and electrical heating element. IEEE Trans. Nanotechnol. 10, 688 (2011).

    Article  Google Scholar 

  24. L. Dong, S. Youkey, J. Bush, J. Jiao, V.M. Dubin, and R.V. Chebiam: Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes. J. Appl. Phys. 101, 024320 (2007).

    Article  Google Scholar 

  25. Y. Woo, G.S. Duesberg, and S. Roth: Reduced contact resistance between an individual single-walled carbon nanotube and a metal electrode by a local point annealing. Nanotechnology 18, 095203 (2007).

    Article  Google Scholar 

  26. W. Cai, Y. Huang, D. Wang, C. Liu, and Y. Zhang: Piezoresistive behavior of graphene nanoplatelets/carbon black/silicone rubber nanocomposite. J. Appl. Polym. Sci. 131, 39778 (2014).

    Google Scholar 

  27. M.A.N. Dewapriya, A.S. Phani, and R.K.N.D. Rajapakse: Influence of temperature and free edges on the mechanical properties of graphene. Modell. Simul. Mater. Sci. Eng. 21, 065017 (2013).

    Article  Google Scholar 

  28. H. Mousavi and M. Bagheri: Effects of Holstein phonons on the electrical conductivity of carbon nanotubes. Phys. E 44, 1722 (2012).

    Article  CAS  Google Scholar 

  29. S. Mitra, A. Singha, and D. Chakravorty: Nonlinear temperature variation of resistivity in graphene/silicate glass nanocomposite. J. Phys. D: Appl. Phys. 46, 375306 (2013).

    Article  Google Scholar 

  30. Alamus, Y. Li, N. Hu, L. Wu, W. Yuan, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga: Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance. Nanotechnology 24, 455501 (2013).

    Article  Google Scholar 

  31. K.S. Karimov, M.T.S. Chani, and F.A. Khalid: Carbon nanotubes film based temperature sensors. Phys. E 43, 1701 (2011).

    Article  CAS  Google Scholar 

  32. A.L. Friedman, H. Chun, D. Heiman, Y.J. Jung, and L. Menon: Investigation of electrical transport in hydrogenated multiwalled carbon nanotubes. Physica B: Condens. Matter 406, 841 (2011).

    Article  CAS  Google Scholar 

  33. V. Kumar, A.A. Bergman, A.A. Gorokhovsky, and A.M. Zaitsev: Formation of carbon nanofilms on diamond for all-carbon based temperature and chemical sensor application. Carbon 49, 1385 (2011).

    Article  CAS  Google Scholar 

  34. L.C. Olsen: Electrical transport properties of graphite assuming lattice scattering. Phys. Rev. B 6, 4836 (1972).

    Article  Google Scholar 

  35. K. Ali and M. Hafez: Growth and structure of carbon nanotubes based novel catalyst for ultrafast nano-temperature sensor application. Superlattices Microstruct. 54, (2012).

  36. L. Qingyang, Z. Yuanliang, and X. Wei: Dynamic compensation of Pt100 temperature sensor in petroleum products testing based on a third order model. In Intelligent Systems and Applications, 2009. ISA 2009. International Workshop on IEEE, 2009, p. 1.

Download references

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation of China (No. 61072032) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, M., Huang, Y., Wang, W. et al. Temperature-dependent electrical properties of graphene nanoplatelets film dropped on flexible substrates. Journal of Materials Research 29, 1288–1294 (2014). https://doi.org/10.1557/jmr.2014.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.109

Navigation