Skip to main content
Log in

Photocatalytic activity of MTiO3 (M = Ca, Ni, and Zn) nanocrystals for water decomposition to hydrogen

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

MTiO3 (M = Ca, Ni, and Zn) nanocrystals were prepared via a facile ethylene glycol-mediated synthesis route followed by calcination in air. The structures and morphologies of nanocrystals were characterized by x-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. The results indicated that CaTiO3 and NiTiO3 are orthorhombic phase, while the ZnTiO3 is orthorhombic phase. The activity of the CaTiO3 nanocrystals for water splitting into H2 was obviously higher than those of the NiTiO3 and ZnTiO3 nanocrystals, which could be attributed to the more negative conduction band position of CaTiO3 than NiTiO3 and ZnTiO3. The Brunauer-Emmett-Teller system-based surface areas of samples are 19.03, 21.13, and 4.17 m2/g for CaTiO3, NiTiO3, and ZnTiO3 nanocrystals, respectively. In addition, the activity of the CaTiO3 nanocrystals increased with increase in the sintering temperature of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. N. Muradov and T. Veziroğlu: “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int. J. Hydrogen Energy 33, 6804 (2008).

    Article  CAS  Google Scholar 

  2. R. Coughlin and M. Farooque: Hydrogen production from coal, water and electrons. Nature 279, 301 (1979).

    Article  CAS  Google Scholar 

  3. S. Sato, S. Lin, Y. Suzuki, and H. Hatano: Hydrogen production from heavy oil in the presence of calcium hydroxide. Fuel 82, 561 (2003).

    Article  CAS  Google Scholar 

  4. R. Cortright, R. Davda, and J. Dumesic: Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964 (2002).

    Article  CAS  Google Scholar 

  5. Y. Lu, L. Guo, C. Ji, X. Zhang, X. Hao, and Q. Yan: Hydrogen production by biomass gasification in supercritical water: A parametric study. Int. J. Hydrogen Energy 31, 822 (2006).

    Article  CAS  Google Scholar 

  6. X. Hao, L. Guo, X. Mao, X. Zhang, and X. Chen: Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. Int. J. Hydrogen Energy 28, 55 (2003).

    Article  CAS  Google Scholar 

  7. R. Navarro, M. Pea, and J. Fierro: Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass. Chem. Rev. 107, 3952 (2007).

    Article  CAS  Google Scholar 

  8. H. Sand: On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Philos. Mag. 1, 45 (1901).

    Article  CAS  Google Scholar 

  9. D. Wang, S. Czernik, D. Montane, M. Mann, and E. Chornet: Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions. Ind. Eng. Chem. Res. 36, 1507 (1997).

    Article  CAS  Google Scholar 

  10. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  11. S. Mao and X. Chen: Selected nanotechnologies for renewable energy applications. Int. J. Energy Res. 31, 619 (2007).

    Article  CAS  Google Scholar 

  12. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye: Nano photocatalytic materials: Possibilities and challenges. Adv. Mater. 24, 229–251 (2012).

    Article  CAS  Google Scholar 

  13. A. Kubacka, M. Fernández-García, and G. Colón: Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555 (2012).

    Article  CAS  Google Scholar 

  14. R. Peng, C. Wu, J. Baltrusaitis, N. Dimitrijevic, T. Rajh, and R. Koodali: Ultra-stable CdS incorporated Ti-MCM-48 mesoporous materials for efficient photocatalytic decomposition of water under visible light illumination. Chem. Commun. 49, 3221 (2013).

    Article  CAS  Google Scholar 

  15. Y. Qu, W. Zhou, Y. Xie, L. Jiang, J. Wang, G. Tian, Z. Ren, C. Tian, and H. Fu: A novel phase-mixed MgTiO3-MgTi2O5 heterogeneous nanorod for high efficiency photocatalytic hydrogen production. Chem. Commun. 49, 8510 (2013).

    Article  CAS  Google Scholar 

  16. X. Chen, S. Shen, L. Guo, and S. Mao: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).

    Article  CAS  Google Scholar 

  17. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, and J. Gong: Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133, 10878 (2011).

    Article  CAS  Google Scholar 

  18. A. Tanaka, K. Hashimoto, B. Ohtani, and H. Kominami: Non-linear photocatalytic reaction induced by visible-light surface-plasmon resonance absorption of gold nanoparticles loaded on titania particles. Chem. Commun. 49, 3419 (2013).

    Article  CAS  Google Scholar 

  19. X. Wang, L. Yin, G. Liu, L. Wang, R. Saito, G. Lu, and H. Cheng: Polar interface-induced improvement in high photocatalytic hydrogen evolution over ZnO-CdS heterostructures. Energy Environ. Sci. 4, 3976 (2011).

    Article  CAS  Google Scholar 

  20. Y. Li, Y. Qu, G. Wang, K. Pan, D. Yu, S. Liu, L. Feng, J. Cui, and L. Ren: Synthesis, luminescence, and photocatalytic activity of KLa2Ti3O9.5:Er3+ nanocrystals for water decomposition to hydrogen. J. Mater. Res. 27, 2925 (2012).

    Article  CAS  Google Scholar 

  21. S. Ikeda, M. Hara, J.N. Kondo, K. Domen, H. Takahashi, T. Okubo, and M. Kakihana: Preparation of a high active photocatalyst, K2La2Ti3O10, by polymerized complex method and its photocatalytic activity of water splitting. J. Mater. Res. 13, 852 (1998).

    Article  CAS  Google Scholar 

  22. K. Domen, T. Takata, S. Ikeda, K. Shinohara, A. Tanaka, M. Hara, and J. Kondo: Ion-exchangeable oxides with layered perovskite structures as photocatalysts for overall water splitting. J. Mater. Res. 454, 177 (1996).

    Google Scholar 

  23. J. Jitputti, T. Rattanavoravipa, S. Chuangchote, S. Pavasupree, Y. Suzuki, and S. Yoshikawa: Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catal. Commun. 10, 378 (2009).

    Article  CAS  Google Scholar 

  24. S. Chuangchote, J. Jitputti, T. Sagawa, and S. Yoshikawa: Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl. Mater. Interfaces 1, 1140 (2009).

    Article  CAS  Google Scholar 

  25. J. Jitputti, S. Pavasupree, Y. Suzuki, and S. Yoshikawa: Synthesis of TiO2 nanotubes and its photocatalytic activity for H2 evolution. Jpn. J. Appl. Phys. 47, 751 (2008).

    Article  CAS  Google Scholar 

  26. J. Jitputti, Y. Suzuki, and S. Yoshikawa: Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution. Catal. Commun. 9, 1265 (2008).

    Article  CAS  Google Scholar 

  27. J. Jang, S. Choi, D. Kim, J. Jang, K. Lee, and J. Lee: Enhanced photocatalytic hydrogen production from water–methanol solution by nickel intercalated into titanate nanotube. J. Phys. Chem. C 113, 8990 (2009).

    Article  CAS  Google Scholar 

  28. X. Chen, C. Li, M. Grätzel, R. Kostecki, and S. Mao: Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41, 7909 (2012).

    Article  CAS  Google Scholar 

  29. X. Zhou, Y. Liu, X. Li, Q. Gao, X. Liu, and Y. Fang: Topological morphology conversion towards SnO2/SiC hollow sphere nanochains with efficient photocatalytic hydrogen evolution. Chem. Commun. 50, 1070 (2013).

    Article  Google Scholar 

  30. H. Mizoguchi, K. Ueda, M. Orita, S. Moon, K. Kajihara, M. Hiranl, and H. Hosono: Decomposition of water by a CaTiO3 photocatalyst under UV light irradiation. Mater. Res. Bull. 37, 2401 (2002).

    Article  CAS  Google Scholar 

  31. K. Lopes, L. Cavalcante, A. Simões, J. Varela, E. Longo, and E. Leite: NiTiO3 powders obtained by polymeric precursor method: Synthesis and characterization. J. Alloys Compd. 468, 327 (2009).

    Article  CAS  Google Scholar 

  32. Y. Xu and A.A. Schoonen: The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543 (2000).

    Article  CAS  Google Scholar 

  33. J. Jang, P. Borse, J. Lee, K. Lim, Q. Jung, E. Jeong, J. Bae, and H. Kim: Photocatalytic hydrogen production in water-methanol mixture over iron-doped CaTiO3. Bull. Korean Chem. Soc. 32, 95 (2011).

    Article  CAS  Google Scholar 

  34. L. Hu, Q. Peng, and Y. Li: Selective synthesis of Co3O nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 130, 16136 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (21171052), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-11-0959), the Postdoctoral Science Foundation of Heilongjiang Province (LBH-Q11009), Program for Innovative Research Team in University (IRT-1237), Innovation Team of Education Bureau of Heilongjiang Province (2013TD002), Heilongjiang Province Natural Science Foundation of Key Projects (ZD201301), and Harbin Technological Innovation Talent of Special Funds (RC2013QN017028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng Wang.

Additional information

Supplementary Material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2014.110.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Qu, Y., Li, R. et al. Photocatalytic activity of MTiO3 (M = Ca, Ni, and Zn) nanocrystals for water decomposition to hydrogen. Journal of Materials Research 29, 1295–1301 (2014). https://doi.org/10.1557/jmr.2014.110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.110

Navigation