Skip to main content
Log in

Selective laser melting additive manufacturing of TiC/Inconel 718 bulk-form nanocomposites: Densification, microstructure, and performance

  • Metal
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) process was used to prepare the nanocrystalline titanium carbide (TiC)-reinforced Inconel 718 matrix bulk-form nanocomposites in the present study. An in-depth relationship between SLM process, microstructures, properties, and metallurgical mechanisms was established. The insufficient laser energy density (η) input limited the densification response of shaped parts due to the formation of either larger-sized pore chains or interlayer micropores. The densification of SLM-processed part increased to a near-full level as the applied η was properly settled. The TiC reinforcements generally experienced successive changes from severely agglomerated in a polygon shape to the uniformly distributed with smoothened and refined structures on increasing the applied η, while the columnar dendrite matrix exhibited strong epitaxial growth characteristic concurrently. The optimally prepared fully dense part achieved a high microhardness with a mean value of 419 HV0.2, a considerably low friction coefficient of 0.29, and attendant reduced wear rate of 2.69 × 10−4 mm3/N m in dry sliding wear tests. The improved densification response, SLM-inherent nonequilibrium metallurgical mechanisms with resultant uniformly dispersed reinforcement microstructures, and elevated microhardness were believed to be responsible for the enhancement of wear performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 60, 2229 (2012).

    Article  CAS  Google Scholar 

  2. G. Cam and M. Kocak: Progress in joining of advanced materials. Int. Mater. Rev. 43, 1 (1998).

    Article  CAS  Google Scholar 

  3. C. Slama, C. Servant, and G. Cizeron: Aging of the Inconel 718 alloy between 500 and 750°C. J. Mater. Res. 12, 2298 (1997).

    Article  CAS  Google Scholar 

  4. M.S. Seehra and V.S. Babu: Low temperature magnetic transition and high temperature oxidation in Inconel alloy 718. J. Mater. Res. 11, 1133 (1996).

    Article  CAS  Google Scholar 

  5. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia: Particulate reinforced metal matrix composite–A review. J. Mater. Sci. 26, 1137 (1991).

    Article  CAS  Google Scholar 

  6. X.L. Wu: Microstructural characteristics of TiC-reinforced composite coating produced by laser syntheses. J. Mater. Res. 14, 2704 (1999).

    Article  CAS  Google Scholar 

  7. D.D. Gu and Y.F. Shen: Microstructures and properties of direct laser sintered tungsten carbide (WC) particle reinforced Cu matrix composites with RE-Si-Fe addition: A comparative study. J. Mater. Res. 24, 3397 (2009).

    Article  CAS  Google Scholar 

  8. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Laser additive manufacturing of metallic components: Materials, processes, and mechanisms. Int. Mater. Rev. 57, 133 (2012).

    Article  CAS  Google Scholar 

  9. S.C. Tjong: Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv. Eng. Mater. 9, 639 (2007).

    Article  CAS  Google Scholar 

  10. A. Mortensen and J. Llorca: Metal matrix composites. Annu. Rev. Mater. Res. 40, 243 (2010).

    Article  CAS  Google Scholar 

  11. J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56, 730 (2007).

    Article  Google Scholar 

  12. M. Das, V.K. Balla, D. Basu, S. Bose, and A. Bandyopadhyay: Laser processing of SiC-particle-reinforced coating on titanium. Scr. Mater. 63, 438 (2010).

    Article  CAS  Google Scholar 

  13. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 58, 3303 (2010).

    Article  CAS  Google Scholar 

  14. Y. Zhou and G.H. Wu: Analysis Methods in Materials Science—X-ray Diffraction and Electron Microscopy in Materials Science, 2nd ed. (Harbin Institute of Technology Press, Harbin, China, 2007).

    Google Scholar 

  15. M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow: Direct selective laser sintering of metals. Rapid Prototyping J. 1, 26 (1995).

    Article  Google Scholar 

  16. X.B. Zhou and J.Th.M. De Hosson: Reactive wetting of liquid metals on ceramic substrates. Acta Mater. 44, 421 (1996).

    Article  CAS  Google Scholar 

  17. Z.F. Yuan, J.J. Ke, and J. Li: Surface Tension of Metals and Alloys, 1st ed. (Science Press, Beijing, China, 2006).

    Google Scholar 

  18. P.M. Ajayan, L.S. Schadler, and P.V. Braun: Nanocomposite Science and Technology (Wiley-VCH Verlag GmbH, Weinheim, 2003).

    Book  Google Scholar 

  19. Q.B. Jia and D.D. Gu: Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J. Alloys Compd. 585, 713 (2014).

    Article  CAS  Google Scholar 

  20. P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, and R. Glardon: Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Mater. 51, 1651 (2003).

    Article  CAS  Google Scholar 

  21. T. Vilaro, C. Colin, J.D. Bartout, L. Nazé, and M. Sennour: Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Mater. Sci. Eng., A 534, 446 (2012).

    Article  CAS  Google Scholar 

  22. H. Yan, P.L. Zhang, Z.S. Yu, C.G. Li, and R.D. Li: Development and characterization of laser surface cladding (Ti,W)C reinforced Ni-30Cu alloy composite coating on copper. Opt. Laser Technol. 44, 1351 (2012).

    Article  CAS  Google Scholar 

  23. Z.M. Wang, K. Guan, M. Gao, X.Y. Li, X.F. Chen, and X.Y. Zeng: The microstructure and mechanical properties of deposited-IN718 by selective laser melting. J. Alloys Compd. 513, 518 (2012).

    Article  CAS  Google Scholar 

  24. V. Erukhimovitch and J. Baram: Crystallization kinetics. Phys. Rev. B 50, 5854 (1994).

    Article  CAS  Google Scholar 

  25. A. Simchi and H. Pohl: Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater. Sci. Eng., A 359,119 (2003).

    Article  Google Scholar 

  26. K. Arafune and A. Hirata: Thermal and solutal marangoni convection in Ln-Ga-Sb system. J. Cryst. Growth 197, 811 (1999).

    Article  CAS  Google Scholar 

  27. R.M. Mahamood, E.T. Akinlabi, M. Shukla, and S. Pityana: Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite. Mater. Des. 50, 656 (2013).

    Article  CAS  Google Scholar 

  28. L.Y. Sheng, F. Yang, T.F. Xi, and J.T. Guo: Investigation on microstructure and wear behavior of the NiAl–TiC-Al2O3 composite fabricated by self-propagation high-temperature synthesis with extrusion. J. Alloys Compd. 554, 182 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully appreciate the financial support from the National Natural Science Foundation of China (No. 51322509 and No. 51104090), the Outstanding Youth Foundation of Jiangsu Province of China (No. BK20130035), the Program for New Century Excellent Talents in University (No. NCET-13-0854), the Program for Distinguished Talents of Six Domains in Jiangsu Province of China (No. 2013-XCL-028), the Fundamental Research Funds for the Central Universities (No. NE2013103), and the Qing Lan Project, Jiangsu Provincial Department of Education, China. Qingbo Jia appreciates the support from the Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics (No.kfjj20130218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Gu.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Q., Gu, D. Selective laser melting additive manufacturing of TiC/Inconel 718 bulk-form nanocomposites: Densification, microstructure, and performance. Journal of Materials Research 29, 1960–1969 (2014). https://doi.org/10.1557/jmr.2014.130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.130

Navigation