Skip to main content
Log in

On the fatigue properties of metals manufactured by selective laser melting — The role of ductility

  • Metal
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The selective-laser-melting (SLM) technique is an outstanding new production technology that allows for time-efficient fabrication of highly complex components from various metals. SLM processing leads to the evolution of numerous microstructural features strongly affecting the mechanical properties. For enabling application in envisaged fields the development of a robust production process for components subjected to different loadings is crucially needed. With regard to the behavior of SLM components subjected to cyclic loadings, the damage evolution can be significantly different depending on the raw material that is used, which is, in this case, highly ductile austenitic stainless steel 316L and high-strength titanium alloy TiAl6V4. By means of a thorough set of experiments, including postprocessing, mechanical testing focusing on high-cycle fatigue and microstructure analyses, it could be shown that the behavior of TiAl6V4 under cyclic loading is dominated by the process-induced pores. The fatigue behavior of 316L, in contrast, is strongly affected by its monotonic strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, P.W. Shindo, F.R. Medina, and R.B. Wicker: Fabrication of metal and alloy components by additive manufacturing: Examples of 3d materials science. J. Mater. Res. Technol. 1, 42 (2012).

    Article  CAS  Google Scholar 

  2. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 57, 133 (2012).

    Article  CAS  Google Scholar 

  3. K.V. Wong and A. Hernandez: A review of additive manufacturing. ISRN Mech. Eng. 2012, 208760 (2012).

    Article  Google Scholar 

  4. T. Niendorf and F. Brenne: Steel showing twinning-induced plasticity processed by selective laser melting — An additively manufactured high performance material. Mater. Charact. 85, 57 (2013).

    Article  CAS  Google Scholar 

  5. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinaz, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker: Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28, 1 (2012).

    Article  CAS  Google Scholar 

  6. A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, and T. Niendorf: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng. Fract. Mech. 120, 15 (2014).

    Article  Google Scholar 

  7. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int. J. Fatigue 48, 300 (2013).

    Article  CAS  Google Scholar 

  8. Z. Liu, D. Zhang, S. Sing, and C. Chua: Interfacial characterisation of SLM parts in multi material processing: Metallurgical diffusion between 316 L stainless steel and C18400 copper alloy. Mater. Charact. 94, 116 (2014).

    Article  CAS  Google Scholar 

  9. B. Vrancken, L. Thijs, J. Kruth, and J. Van Humbeeck: Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting. Acta Mater. 68, 150 (2014).

    Article  CAS  Google Scholar 

  10. T. Scharowsky, F. Osmanlic, R.F. Singer, and C. Körner: Melt pool dynamics during selective electron beam melting. Appl. Phys. A: Mater. Sci. Process. 114, 1303 (2014).

    Article  CAS  Google Scholar 

  11. C. Emmelmann, P. Scheinemann, M. Munsch, and V. Seyda: Laser additive manufacturing of modified implant surfaces with osseointegrative characteristics. Phys. Procedia 12, 375 (2011).

    Article  CAS  Google Scholar 

  12. C. Yan, L. Hao, A. Hussein, P. Young, and D. Raymont: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater. Des. 55, 533 (2014).

    Article  CAS  Google Scholar 

  13. F. Brenne, T. Niendorf, and H.J. Maier: Additively manufactured cellular structures: Impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load. J. Mater. Process. Technol. 213, 1558 (2013).

    Article  CAS  Google Scholar 

  14. L.E. Murr, K.N. Amato, S.J. Li, Y.X. Tian, X.Y. Cheng, S.M. Gaytan, E. Martinez, P.W. Shindo, F. Medina, and R.B. Wicker: Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 4, 1396 (2011).

    Article  CAS  Google Scholar 

  15. T. Habijan, C. Haberland, H. Meier, J. Frenzel, J. Wittsiepe, C. Wuwer, C. Greulich, T.A. Schildhauer, and M. Köller: The biocompatibility of dense and porous Nickel–Titanium produced by selective laser melting. Mater. Sci. Eng. C 33, 419 (2013).

    Article  CAS  Google Scholar 

  16. P. Heinl, L. Müller, C. Körner, R.F. Singer, and F.A. Müller: Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4, 1536 (2008).

    Article  CAS  Google Scholar 

  17. G.N. Levy, R. Schindel, and J. Kruth: Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann. Manuf. Technol. 52, 589 (2003).

    Article  Google Scholar 

  18. T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster, and D. Schwarze: Highly anisotropic steel processed by selective laser melting. Metall. Mater. Trans. B 44B, 794 (2013).

    Article  Google Scholar 

  19. P. Kanagarajah, F. Brenne, T. Niendorf, and H.J. Maier: Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Mater. Sci. Eng. A 588, 188 (2013).

    Article  CAS  Google Scholar 

  20. E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder: Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 34, 159 (2012).

    Article  CAS  Google Scholar 

  21. P. Edwards and M. Ramulu: Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater. Sci. Eng. A 598, 327 (2014).

    Article  CAS  Google Scholar 

  22. L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, and R.B. Wicker: Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2, 20 (2009).

    Article  CAS  Google Scholar 

  23. B.P. Kashyap and K. Tangri: On the hall-petch relationship and substructural evolution in type 316L stainless steel. Acta Metall. Mater. 43, 3971 (1995).

    Article  CAS  Google Scholar 

  24. L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, and P.W. Shindo: Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting. J. Mater. Res. Technol. 1, 167 (2012).

    Article  CAS  Google Scholar 

  25. D. Eylon and B. Strope: Fatigue crack initiation in Ti-6wt % Al-4wt % V castings. J. Mater. Sci. 14, 345 (1979).

    Article  CAS  Google Scholar 

  26. S.G. Ivanova, R.R. Biedeman, and R.D. Sisson, Jr.: Investigation of fatigue crack initiation in Ti-6Al-4V during tensile-tensile fatigue. J. Mater. Eng. Perform. 11, 226 (2002).

    Article  CAS  Google Scholar 

  27. L.R. Saitova, H.W. Höppel, M. Göken, I.P. Semenova, and R.Z. Valiev: Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V. Int. J. Fatigue 31, 322 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Direct Manufacturing Research Center (DMRC), its industry partners, and the state of North Rhine Westphalia for financial support of the present study. Mrs. Kristina Duschik is thanked for conducting TEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Leuders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leuders, S., Lieneke, T., Lammers, S. et al. On the fatigue properties of metals manufactured by selective laser melting — The role of ductility. Journal of Materials Research 29, 1911–1919 (2014). https://doi.org/10.1557/jmr.2014.157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.157

Navigation