Skip to main content
Log in

Static and dynamic hydrophobicity of alumina-based porous ceramics impregnated with fluorinated oil

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using phase separation, alumina-based porous ceramics with three-dimensional frameworks were prepared, with fine structural roughness created by subsequent hot-water treatment. The pore volume of the porous alumina and its specific surface area increased concomitantly with increasing hot-water treatment time. Porous alumina/fluorinated oil bulk composites were prepared by coating hydrophobic silane onto the porous ceramic surface and subsequently impregnating fluorinated oil. A wetting ridge formed at the bottom of the water droplets on the composites. Partial contact between the water and solid surface was inferred from a comparison of interface energies in the system. The composites provided a smaller sliding angle (SA) than that of the sample without impregnating fluorinated oil. The composite with fine roughness exhibited longer sustainability of a small SA than that without fine roughness. Particle image velocimetry revealed that the dominant sliding mode for water droplets on this composite was slipping. The droplets moved on the surface under an external electric field. Coulombic force contributes to this motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. A. Nakajima: Design of hydrophobic surfaces for liquid droplet control. NPG Asia Mater. 3, 49–56 (2011).

    Google Scholar 

  2. R.N. Wenzel: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936).

    CAS  Google Scholar 

  3. A.B.D. Cassie and S. Baxter: Wettablity of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).

    CAS  Google Scholar 

  4. A. Nakajima, K. Hashimoto, and T. Watanabe: Recent studies on super-hydrophobic films. Monatsh. Chem. 132, 31–41 (2001).

    CAS  Google Scholar 

  5. X. Feng and L. Jiang: Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063–3078 (2006).

    CAS  Google Scholar 

  6. R. Blossey: Self-cleaning surfaces—virtual realities. Nat. Mater. 2, 301–306 (2003).

    CAS  Google Scholar 

  7. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe: Effects of the surface roughness on sliding angles of water droplets on super-hydrophobic surfaces. Langmuir 16, 5754–5760 (2000).

    CAS  Google Scholar 

  8. G. McHale, N.J. Shirtcliffe, and M.I. Newton: Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir 20, 10146–10149 (2004).

    CAS  Google Scholar 

  9. T.P. Nguyen, P. Brunet, Y. Coffinier, and R. Boukherroub: Quantitative testing of robustness on superomniphobic surfaces by drop impact. Langmuir 26, 18369–18373 (2010).

    CAS  Google Scholar 

  10. L. Bocquet and E. Lauga: A smooth future?Nat. Mater. 10, 334–337 (2011).

    CAS  Google Scholar 

  11. T-S. Wong, S.H. Kang, S.K.Y. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, and J. Aizenberg: Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    CAS  Google Scholar 

  12. L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, and H.A. Stone: Imbibition by polygonal spreading on microdecorated surfaces. Nat. Mater. 6, 661–664 (2007).

    CAS  Google Scholar 

  13. U. Bauer and W. Federle: The insect-trapping rim of Nepenthes pitchers: Surface structure and function. Plant Signal. Behav. 4, 1019–1023 (2009).

    Google Scholar 

  14. A. Lafuma and D. Quéré: Slippery pre-suffused surfaces. Europhysics Lett. 96, 56001 (2011).

    Google Scholar 

  15. W. Ma, Y. Higaki, H. Otsuka, and A. Takahara: Perfluoropolyether-infused nano-texture: A versatile approach to omniphobic coatings with low hysteresis and high transparency. Chem. Commun. 49, 597–599 (2013).

    CAS  Google Scholar 

  16. H.A. Stone: Ice-phobic surfaces that are wet. ACS Nano 6, 6536–6540 (2012).

    CAS  Google Scholar 

  17. P. Kim, T-S. Wong, J. Alvarenga, M.J. Kreder, W.E. Adorno-Martinez, and J. Aizenberg: Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6, 6569–6577 (2012).

    CAS  Google Scholar 

  18. K. Rykaczewski, S. Anand, S.B. Subramanyam, and K.K. Varanasi: Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 29, 5230–5238 (2013).

    CAS  Google Scholar 

  19. S. Anand, A.T. Paxson, R. Dhiman, J.D. Smith, and K.K. Varanasi: Enhanced condensation on lubricant-impregnated nanotextured surfaces. ACS Nano 6, 10122–10129 (2012).

    CAS  Google Scholar 

  20. J.D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R.E. Cohen, G.H. McKinleya, and K.K. Varanasi: Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9, 1772–1780 (2013).

    CAS  Google Scholar 

  21. N. Vogel, R.A. Belisle, B. Hatton, T-S. Wong, and J. Aizenberg: Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nat. Commun. 4, 2167 (2013).

    Google Scholar 

  22. X. Yao, Y. Hu, A. Grinthal, T-S. Wong, L. Mahadevan, and J. Aizenberg: Adaptive fluid-infused porous films with tunable transparency and wettability. Nat. Mater. 12, 529–534 (2013).

    CAS  Google Scholar 

  23. S. Gogte, P. Vorobieff, R. Truesdell, A. Mammoli, F. van Swol, P. Shah, and C.J. Brinker: Effective slip on textured superhydrophobic surfaces. Phys. Fluids 17, 51701 (2005).

    Google Scholar 

  24. S.R. Hodges, O.E. Jensen, and J.M. Rallison: Sliding, slipping and rolling: The sedimentation of a viscous drop down a gently inclined plane. J. Fluid Mech. 512, 95–131 (2004).

    CAS  Google Scholar 

  25. J.B. Brzoska, F. Brochard, and F. Rondelez: Motions of droplets on hydrophobic model surfaces induced by thermal gradients. Langmuir 9, 2220–2224 (1993).

    CAS  Google Scholar 

  26. K. Takeda, A. Nakajima, K. Hashimoto, and T. Watanabe: Control of water droplets on super-hydrophobic surfaces by static electric field. Jpn. J. Appl. Phys. 41, 287–291 (2002).

    CAS  Google Scholar 

  27. X. Hong, X. Gao, and L. Jiang: Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. J. Am. Chem. Soc. 129, 1478–1479 (2007).

    CAS  Google Scholar 

  28. K. Ichimura, S-K. Oh, and M. Nakagawa: Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000).

    CAS  Google Scholar 

  29. A. Hashimoto, M. Sakai, N. Yoshida, S. Suzuki, Y. Kameshima, and A. Nakajima: Direct measurement of the motion of water droplets on a hydrophobic self-assembled monolayer surface under airflow. J. Surf. Finishing Soc. Jpn. 59, 907–912 (2008).

    CAS  Google Scholar 

  30. Y. Tokudome, K. Fujita, and K. Nakanishi: Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol–gel process accompanied by phase separation. Chem. Mater. 13, 3393–3398 (2007).

    Google Scholar 

  31. K. Tadanaga, N. Katata, and T. Minami: Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol–gel method. J. Am. Ceram. Soc. 80, 3213–3216 (1997).

    CAS  Google Scholar 

  32. M. Sakai, A. Hashimoto, N. Yoshida, S. Suzuki, Y. Kameshima, and A. Nakajima: An image analysis system for evaluating sliding behavior of a liquid droplet on a hydrophobic surface. Rev. Sci. Instrum. 78, 045103 (2007).

    Google Scholar 

  33. S. Suzuki, A. Nakajima, M. Sakai, Y. Sakurada, N. Yoshida, A. Hashimoto, Y. Kameshima, and K. Okada: Slipping and rolling ratio of sliding acceleration for a water droplet sliding on fluoroalkylsilane coatings of different roughness. Chem. Lett. 37, 58–59 (2008).

    CAS  Google Scholar 

  34. W.C. Misra ed.: Oxides and Hydroxides of Alumina. Alcoa Technical Paper No. 19. (Alcoa Laboratories, 1987); p. 15.

  35. T. Furuta, M. Sakai, T. Isobe, and A. Nakajima: Evaporation behavior of a microliter and sub-nanoliter scale water droplets on two different fluoroalkylsilane coatings. Langmuir 25, 11998–12001 (2009).

    CAS  Google Scholar 

  36. A. Nakajima, M. Hoshino, J-H. Song, Y. Kameshima, and K. Okada: Effect of roughness on lipophobicity of a surface prepared using boehmite nanoparticles and fluoroalkylsilane. Chem. Lett. 34, 908–909 (2005).

    CAS  Google Scholar 

  37. T. Furuta, M. Sakai, T. Isobe, S. Matsushita, and A. Nakajima: Sliding of water droplets on hydrophobic surfaces with various hydrophilic region sizes. Langmuir 27, 7307–7313 (2011).

    CAS  Google Scholar 

  38. D. Öner and T.J. McCarthy: Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16, 7777–7782 (2000).

    Google Scholar 

  39. S.D. Iliev and N.C. Pesheva: Wetting properties of well-structured heterogeneous substrates. Langmuir 19, 9923–9931 (2003).

    CAS  Google Scholar 

  40. A. Nakajima, T. Miyamoto, M. Sakai, T. Isobe, and S. Matsushita: Comparative study of the impact and sliding behavior of water droplets on two different hydrophobic silane coatings. Appl. Surf. Sci. 292, 990–996 (2014).

    CAS  Google Scholar 

  41. M. Sakai, H. Kono, A. Nakajima, H. Sakai, M. Abe, and A. Fujishima: Water droplets’ internal fluidity during horizontal motion on a superhydrophobic surface with an external electric field. Langmuir 26, 1493–1495 (2010).

    CAS  Google Scholar 

  42. A.F. Diaz and R.M. Felix-Navarro: A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. J. Electrostat. 62, 277–290 (2004).

    CAS  Google Scholar 

  43. K. Yatsuzaka, Y. Mizuno, and K. Asano: Electrification phenomena of distilled water dripping and sliding on polymer surface. J. Instrum. Electrostat. Jpn. 16, 401–410 (1992). [in Japanese].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of the Center of Advanced Materials Analysis (CAMA) at Tokyo Institute of Technology for SEM observations. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Nakajima.

Additional information

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/jmr.2014.168.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuruki, Y., Sakai, M., Isobe, T. et al. Static and dynamic hydrophobicity of alumina-based porous ceramics impregnated with fluorinated oil. Journal of Materials Research 29, 1546–1555 (2014). https://doi.org/10.1557/jmr.2014.168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.168

Navigation