Skip to main content

Advertisement

Log in

A look into Cu-based shape memory alloys: Present scenario and future prospects

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cu-based shape memory alloys (SMAs) and among these copper–zinc (Cu–Zn), copper–aluminum (Cu–Al), and copper–tin (Cu–Sn) alloys both with and without ternary additions have shown potential due to their good shape recovery, ease of fabrication, excellent conductivity of heat and electricity. However, their applications are still limited because of the shortcomings of thermal stability, brittleness, and mechanical strength, which are closely related with microstructural characteristic of Cu-based SMAs, such as coarse grain sizes, high elastic anisotropies, and the congregation of secondary phases or impurities along the grain boundaries. Efforts are being made to overcome these drawbacks with proper ternary additions, adopting alternative processing routes and also optimizing the heat treatment cycles. The present article will deal with the current status of research and commercialization of Cu-based SMAs and dwell upon the future directions in which research should be targeted and future prospects of converting the research into components for commercial use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3

Similar content being viewed by others

References

  1. J.D. Stice and C.M. Wayman: Observations of aging effects in a Cu-Sn shape memory alloy. Metall. Trans. A 13(10), 1687 (1982).

    Article  Google Scholar 

  2. M. Kamal: Mechanical properties of rapidly solidified of Cu–Sn shape memory alloys. Radiat. Eff. Defects Solids 161(3), 189 (2006).

    Article  CAS  Google Scholar 

  3. J. Perkins: The microstructure of rapidly solidified β-phase Cu-Zn-Al alloys. Metall. Trans. A 14(11), 2229 (1983).

    Article  Google Scholar 

  4. S. Prashantha, M.K. Ranganatha Swamy, and U.S. Mallikarjun: Shape memory effect in Cu-Sn-Mn ternary shape memory alloy processed by ingot metallurgy. Int. J. Metall. Mater. Sci. Eng. (IJMMSE) 2(1), 12 (2012).

    Google Scholar 

  5. H.C. Yi and J.J. Moore: Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted material. J. Mater. Sci. 25(2), 1159 (1990).

    Article  CAS  Google Scholar 

  6. V. Asanovic, K. Delijicm, and N. Jaukovic: A study of transformations of β-phase in Cu–Zn–Al shape memory alloys. Scr. Mater. 58, 599 (2008).

    Article  CAS  Google Scholar 

  7. Y. Sutou, T. Omori, R. Kainuma, and K. Ishida: Ductile Cu-Al-Mn based shape memory alloys: General properties and applications. Mater. Sci. Technol. 24(8), 896 (2008).

    Article  CAS  Google Scholar 

  8. J. Ma, I. Karaman, and R.D. Noebe: High temperature shape memory alloys. Int. Mater. Rev. 55(5), 257 (2010).

    Article  CAS  Google Scholar 

  9. F. Saule, M. Ahlers, F. Kropef, and E.B. Rivero: The martensitic phases and their stability in Cu-Zn and Cu-Zn-Al alloys—IV. The influence of lattice parameter changes and evaluation of phase stabilities. Acta Metall. 40(12), 3229 (1992).

    Article  CAS  Google Scholar 

  10. C. Ling-fei, W. Ming-pu, L. Zhou, X. Ben, and S. Yu-chang: Thermal cycling effect in Cu-11.9Al-2.5Mn shape memory alloy with high Ms temperature. Trans. Nonferrous Soc. China 12(4), 716 (2002).

    Google Scholar 

  11. Y. Sutou, T. Omori, R. Kainuma, N. Ono, and K. Ishida: Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by texture control. Metall. Mater. Trans. A 33A(9), 2817 (2002).

    Article  CAS  Google Scholar 

  12. Q. Wang, F. Han, C. Cui, S. Bu, and L. Bai: Effect of aging on the reverse martensitic phase transformation behaviours of Cu-Al-Mn shape memory alloys. Mater. Lett. 61, 5185 (2007).

    Article  CAS  Google Scholar 

  13. J. Chen, Z. Lia, and Y.Y. Zhao: A high-working-temperature CuAlMnZr shape memory alloy. J. Alloys Compd. 480, 481 (2009).

    Article  CAS  Google Scholar 

  14. F. Dagdelen, T. Gokhan, A. Aydogdu, Y. Aydogdu, and O. Adigüzel: Effects of thermal treatments on transformation behaviour in shape memory Cu-Al-Ni alloys. Mater. Lett. 57, 1079 (2003).

    Article  CAS  Google Scholar 

  15. U. Sarı and T. Kirindi: Effects of deformation on microstructure and mechanical properties of a Cu-Al-Ni shape memory alloy. Mater. Charact. 59, 920 (2008).

    Article  CAS  Google Scholar 

  16. M. Miki, N. Maeshiro, and Y. Ogino: Effects of additional elements on the super plasticity of a Cu-14Al-3Ni shape memory alloy. Mater. Trans., JIM 30(12), 999 (1989).

    Article  CAS  Google Scholar 

  17. N. Shajil, D. Das, and L. Chandrasekaran: Effects of cycling on the pseudoelastic properties of CuAlMnNi & TiNi based pseudoelastic alloys. Int. J. Struct. Changes Solids–Mech. Appl. 1(1), 171 (2009).

    Google Scholar 

  18. Y. Chen, X. Zhang, D.C. Dunand, and C.A. Schuh: Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires. Appl. Phys. Lett. 95(17), 906 (2009).

    Google Scholar 

  19. Y. Sutou, N. Koeda, T. Omori, R. Kainuma, and K. Ishida: Effects of ageing on bainitic and thermally induced martensitic transformations in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater. 57, 5748 (2009).

    Article  CAS  Google Scholar 

  20. Y. Sutou, N. Koeda, T. Omori, R. Kainuma, and K. Ishida: Effect of aging on stress induced martensitic transformations in ductile Cu-Al-Mn based shape memory alloys. Acta Mater. 57, 5759 (2009).

    Article  CAS  Google Scholar 

  21. S.K. Vajpai, R.K. Dube, and S. Sangal: Processing and characterization of Cu-Al-Ni shape memory alloy strips prepared from prealloyed powder by hot densification rolling of powder preforms. Metall. Mater. Trans. 42A, 3178 (2011).

    Article  CAS  Google Scholar 

  22. R. Zengin and M. Ceylan: The effects of neutron irradiation on oxidation behavior, microstructure and transformation temperatures of Cu–12.7 wt.% Al–5 wt.% Ni–2 wt.% Mn shape memory alloy. Mater. Lett. 58, 55 (2003).

    Article  CAS  Google Scholar 

  23. R. Zengin: Microstructure and oxidation properties of a neutron-irradiated Cu–13.5wt% Al–4 wt% Ni shape memory alloy. Phys. B 363, 110 (2005).

    Article  CAS  Google Scholar 

  24. S. Stanciu, L-G. Bujoreanu, B. Özkal, M. Lutfi Öveçoğlu, and A.V. Sandu: Study of precipitate formation in Cu–Al–Ni–Mn–Fe shape memory alloys. J. Optoelectron. Adv. Mater. 10(6), 1365 (2008).

    CAS  Google Scholar 

  25. C. Xiaomin, H. Feng, L. Ni, and W. Xingwen: Microstructure and shape memory effect of Cu-26.1Zn-4.8Al alloy. J. Wuhan Univ. Technol., Mater. Sci. Ed. 23, 717 (2008).

    Article  CAS  Google Scholar 

  26. V. Asanovic and K. Delujc: The mechanical behavior and shape memory recovery of Cu-Zn-Al alloys. Metalurgija 13(1), 59 (2007).

    CAS  Google Scholar 

  27. Y.J. Bai, G.L. Geng, X.F. Bian, D.S. Sun, and S.R. Wang: Influence of initial heating temperature on the reverse martensitic transformation of Cu–Zn–Al–Mn–Ni alloy. Mater. Sci. Eng., A 284, 25 (2000).

    Article  Google Scholar 

  28. N. Kayali, S. Ozgen, and O. Adigiizel: The influence of ageing on martensite morphology in shape memory Cu–Zn–Al alloys. J. Phys. IV France 7(C5), 317 (1997).

    Article  Google Scholar 

  29. V.H.C. de Albuquerque, T.A. de A. Melo, R.M. Gomes, S.J.G. de Limaa, and J.M.R.S. Tavares: Grain size and temperature influence on the toughness of a Cu-Al-Be shape memory alloy. Mater. Sci. Eng., A 528, 459 (2010).

    Article  CAS  Google Scholar 

  30. P. Zhang, A. Ma, S. Lu, P. Lin, J. Jiang, H. Ma, and C. Chu: Effect of equal channel angular pressing and heat treatment on the microstructure of Cu-Al-Be-B shape memory alloy. Mater. Lett. 63, 2676 (2009).

    Article  CAS  Google Scholar 

  31. S. Montecinos and A. Cuniberti: Martensitic transformation and grain size in a Cu-Al-Be alloy. Procedia Mater. Sci. 1, 149 (2012).

    Article  CAS  Google Scholar 

  32. A. Abu Arab and M. Ahlers: The stabilization of martensite in Cu-Zn-Al alloys. Acta Metall. 36(9), 2627 (1988).

    Article  Google Scholar 

  33. F. Saule and M. Ahlers: Stability, stabilization and lattice parameters in Cu-Zn-Al martensites. Acta Metall. Mater. 43(6), 2373 (1995).

    Article  CAS  Google Scholar 

  34. N. Kuwano, T. Doi, and T. Eguchi: Annealing behaviour of heavily deformed martensites of Cu-Al alloys. Mater. Trans., JIM 20, 37 (1979).

    Article  CAS  Google Scholar 

  35. S. Sathish, U.S. Mallik, and T.N. Raju: Microstructure and shape memory effect of Cu-Zn-Ni shape memory alloys. J. Miner. Mater. Charact. Eng. 2, 71 (2014).

    CAS  Google Scholar 

  36. S. Pourkhorshidi, N. Parvin, M.S. Kenevisi, M. Naeimi, and H. Ebrahimnia Khaniki: A study on the microstructure and properties of Cu-based shape memory alloy produced by hot extrusion of mechanically alloyed powders. Mater. Sci. Eng., A 556, 658 (2012).

    Article  CAS  Google Scholar 

  37. J.M. Guilemany, F. Peregrín, F.C. Lovey, N. LLorca, and E. Cesari: TEM study of β and martensite in Cu-Al-Mn shape memory alloys. Mater. Charact. 26, 23 (1991).

    Article  CAS  Google Scholar 

  38. E. Hornbogen, V. Mertinger, and J. Spielfield: Ausageing and ausforming of a copper based shape memory alloy with high transformation temperatures. Z. Metallkd. 90(5), 318 (1999).

    CAS  Google Scholar 

  39. O. Adigiizel: Martensite ordering and stabilization in copper based shape memory alloys. Mater. Res. Bull. 30(6), 755 (1995).

    Article  Google Scholar 

  40. S.N. Sauda, E. Hamzaha, T. Abubakara, and R. Hosseinian: A review on influence of alloying elements on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys. Jurnal Reknologi (Sciences & Engineering) 64(1), 51 (2013).

    Google Scholar 

  41. H. Sakamoto, Y. Kijima, and K. Shimizu: Fatigue and fracture characteristics of polycrystalline Cu-Al-Ni shape memory alloys. Mater. Trans., JIM 23, 585 (1982).

    Article  Google Scholar 

  42. S. Kustov, S. Golyandin, K. Sapozhnikov, E. Cesari, J. Van Humbeeck, and R. De Batist: Influence of martensitic stabilization on the low temperature non-linear anelasticity in Cu-Zn-Al shape memory alloys. Acta Mater. 50, 3023 (2002).

    Article  CAS  Google Scholar 

  43. Y. Suotou, T. Omori, R. Kainuma, and K. Ishida: Ductile Cu-Al-Mn based shape memory alloys: General properties and applications. Mater. Sci. Technol. 24(8), 896 (2008).

    Article  CAS  Google Scholar 

  44. U.S. Mallik and V. Sampath: Effect of alloying on microstructure and shape memory characteristics of Cu–Al–Mn shape memory alloys. Mater. Sci. Eng., A 481–482, 680 (2008).

    Article  CAS  Google Scholar 

  45. C. Segui, E. Cesari, and J. Van Humbeeck: Irreversibility in two stage martensitic transformation of Cu-Al-Ni and Cu-Zn-Mn alloys. Mater. Trans., JIM 31(5), 375 (1990).

    Article  CAS  Google Scholar 

  46. M. Sharma, S.K. Vajpai, and R.K. Dube: Processing and characterization of Cu-Al-Ni shape memory alloy strips prepared from elemental powders via a novel powder metallurgy route. Metall. Mater. Trans. A 41A, 2905 (2010).

    Article  CAS  Google Scholar 

  47. Z. Li, Z.Y. Pan, N. Tang, Y.B. Jiang, N. Liu, M. Fang, and F. Zheng: Cu–Al–Ni–Mn shape memory alloy processed by mechanical alloying and powder metallurgy. Mater. Sci. Eng., A 417, 225 (2006).

    Article  CAS  Google Scholar 

  48. U.S. Mallik and V. Sampath: Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J. Alloys Compd. 469, 156 (2009).

    Article  CAS  Google Scholar 

  49. V.R. Harchekar and M. Singla: Cu—Zn—Al (6%) shape memory alloy with low martensitic temperature and a process for its manufacture. Patent 7195681, Issued on March 27, 2007.

  50. R. Zengin and M. Ceylan: The changes in transformation temperatures under stress of Cu-12.7Al-5Ni-2Mn alloys. Thermochim. Acta 414, 155 (2004).

    Article  CAS  Google Scholar 

  51. A.C. Kneissl, E. Unterweger, and G. Lojen: Functional properties of wires and thin ribbons of several shape memory alloys. Adv. Eng. Mater. 8(11), 1113 (2006).

    Article  CAS  Google Scholar 

  52. S. Yang, Y. Su, C. Wang, and X. Liu: Microstructure and properties of Cu–Al–Fe high-temperature shape memory alloys. Mater. Sci. Eng., B 185, 67 (2014).

    Article  CAS  Google Scholar 

  53. Y. Sutou, T. Omori, K. Yamauchi, N. Ono, R. Kainuma, and K. Ishida: Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Mater. 53, 4121 (2005).

    Article  CAS  Google Scholar 

  54. F.M. Sánchez-Arévalo, T. García-Fernández, G. Pulos, and M. Villagrán-Muniz: Use of digital speckle pattern correlation for strain measurements in a CuAlBe shape memory alloy. Mater. Charact. 60, 775–782 (2009).

    Article  CAS  Google Scholar 

  55. Z. Xiao, M. Fang, Z. Li, T. Xiao, and Q. Lei: Structure and properties of ductile Cu-Al-Mn shape memory alloy synthesized by mechanical alloying and powder metallurgy. Mater. Des. 58, 451 (2014).

    Article  CAS  Google Scholar 

  56. H. Funakubo: Shape Memory Alloys, 1st ed.; Gordon and Breach Science Publishers: New York, 1987; p. 226.

    Google Scholar 

  57. C.M. Wayman and T.W. Duerig: An introduction to martensite and shape memory. Engineering Aspects of Shape Memory Alloys, 1st ed.; Butterworth-Heinemann: Oxford, 1990; p. 3.

    Chapter  Google Scholar 

  58. T.A. Schroeder and C.M. Wayman: The two-way shape memory effect and other “training” phenomena in Cu-Zn single crystals. Scr. Metall. 11(3), 225 (1977).

    Article  CAS  Google Scholar 

  59. R. Stalmans, J. Van Humbeeck, and L. Delaey: Training and the two way memory effect in copper based shape memory alloys. J. Phys. IV C4(1), 403 (1991).

    Google Scholar 

  60. H. Wei Min: Two-way behavior of a Nitinol torsion bar. In Proc. SPIE Vol. 3675, Smart Structures and Materials; Smart Materials Technologies, M. Wuttig, ed. (SPIE Digital Library, Newport Beach, CA, 1999); p. 284.

    Google Scholar 

  61. J. San Juan, M.L. Nó, and C.A. Schuh: Superelastic cycling of Cu–Al–Ni shape memory alloy micropillars. Acta Mater. 60(10), 4093 (2012).

    Article  CAS  Google Scholar 

  62. W. Huang and W. Toh: Training two-way shape memory alloy by reheat treatment. J. Mater. Sci. Lett. 19, 1549 (2000).

    Article  CAS  Google Scholar 

  63. A.C. Kneisl, E. Unterweger, and G. Lojen: Functional properties of wires and thin ribbons of several shape memory alloys. Adv. Eng. Mater. 8(11), 1115 (2006).

    Google Scholar 

  64. Y. Bai, Q. Shi, G. Geng, D. Sun, and X. Bian: Formation mechanism of curved martensite structure in Cu based shape memory alloys. J. Mater. Sci. Technol. 16(1), 78 (2000).

    Google Scholar 

  65. R. Casati, M. Vedani, and A. Tuiss: Thermal cycling of stress-induced martensite for high-performance shape memory effect. Scr. Mater. 80, 13 (2014).

    Article  CAS  Google Scholar 

  66. G.S. Firstov, J. Van Humbeeck, and Y.N. Koval: High temperature shape memory alloys: Problems and prospects. J. Intell. Mater. Syst. Struct. 17, 1041 (2006).

    Article  CAS  Google Scholar 

  67. I. Hopulele, S. Istrate, S. Stanciu, and Gh. Calugaru: Comparative study of certain Cu-Zn-Al-type alloys concerning their superelastic behavior and shape memory. J. Optoelectronics Adv. Mater. 6(1), 277 (2004).

    CAS  Google Scholar 

  68. D. Hel: Pseudoelastic behavior of shape memory alloys: Constitutive theory and identification of the material parameters using neural network. Technische Mechanik 25(1), 39 (2005).

    Google Scholar 

  69. M.C. Van Schoor: Method and device for measuring strain using shape memory alloy materials, Issued patent: US6550341, Issue date April 22, 2003.

  70. M.S. Alam, M.A. Youssef, and M. Nehdi: Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: A review. Can. J. Civ. Eng. 34(9), 1075 (2007).

    Article  Google Scholar 

  71. B. Cunningham and K.H.G. Ashbee: An in situ SEM kossel x-ray diffraction study of pseudoelasticity. Acta Metall. Mater. 38(12), 2561 (1990).

    Article  CAS  Google Scholar 

  72. S. Miura and H. Kato: Thermodynamical analysis of pseudoelasticity and calorimetry in shape memory alloys. Mater. Sci. Res. Int. 2, 67 (1995).

    Google Scholar 

  73. Z. Wei, J. Laizhu, L. Ning, and W. Yuhua: Improvement of shape memory effect in an Fe–Mn–Si–Cr–Ni alloy fabricated by equal channel angular pressing. J. Mater. Process Technol. 208(1–3), 130 (2008).

    Article  CAS  Google Scholar 

  74. S. Montecinos, A. Cuniberti, and A. Sepúlveda: Grain size and pseudoelastic behaviour of a Cu–Al–Be alloy. Mater. Charact. 59, 117 (2008).

    Article  CAS  Google Scholar 

  75. A. Yawny, J. Malarria, F.C. Lovey, and M. Sade: Recoverable effects related to pseudoelastic cycling in Cu-Zn-Al single crystals. J. Phys. C5, 531 (1997).

    Google Scholar 

  76. J. Van Humbeeck and L. Delaey: The influence of strain-rate, amplitude and temperature on the hysteresis of a pseudoelastic Cu-Zn-Al single crystal. J. Phys. C5, 1007 (1981).

    Google Scholar 

  77. S. Miyazaki, Y.Q. Fu, and W.M. Huang: Thin Film Shape Memory Alloys, 1st ed.; Cambridge University Press: Cambridge, England, 2009; pp. 261, 370.

    Book  Google Scholar 

  78. J. San Juan, M.L. No, and C.A. Schuh: Thermomechanical behavior at the nanoscale and size effects in shape memory alloys. J. Mater. Res. 26(19), 2461 (2011).

    Article  CAS  Google Scholar 

  79. H. Pops: Stress-induced pseudoelasticity in ternary Cu-Zn based beta prime phase alloys. Metall. Trans. 1(25), 1 (1970).

    Google Scholar 

  80. S. Casciati: Experimental studies on the fatigue life of shape memory alloy bars. Smart Struct. Syst. 6(1), 73 (2010).

    Article  Google Scholar 

  81. J. Ortín and A. Planes: Thermodynamics of thermoelastic martensitic transformations. Acta Metall. 37(5), 1433 (1989).

    Article  Google Scholar 

  82. M.A. Dvorack, N. Kuwano, S. Polat, H. Chen, and C.M. Wayman: Decomposition of a β1-phase Cu-Al-Ni alloy at elevated temperature. Scr. Metall. 17(11), 1333 (1983).

    Article  CAS  Google Scholar 

  83. M.A. Morris: High temperature properties of ductile Cu-Al-Ni shape memory alloys with boron additions. Acta Metall. 40, 1573 (1992).

    Article  CAS  Google Scholar 

  84. C.M. Wayman: Thennoelastic martensitic transformations and the shape memory effect. In Proc. of the Int. Conf. on phase Trans. In Soliak, Maleme-Chania, North-Holland, New York, 1984, p. 657.

    Google Scholar 

  85. J. Van Humbeeck: High temperature shape memory alloys. Trans. ASME 12, 98 (1999).

    Google Scholar 

  86. K. Marukawa and K. Tsuchiya: Two important aging effects on the martensite phase in CuZnAI alloys: Rubber effect and stabilization of martensite. J. Phys. 11, 8 (2001).

    Google Scholar 

  87. D. Junkai, D. Xiangdong, L. Turab, S. Tetsuro, O. Kazuhiro, S. Jun, A. Saxena, and R. Xiaobing: Microscopic mechanism of martensitic stabilization in shape-memory alloys: Atomic-level processes. Phys. Rev. B 81(22), 1 (2010).

    Google Scholar 

  88. Y. Wang, X. Ren, and K. Otsuka: Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97(22), 5703 (2006).

    Google Scholar 

  89. R. Romero and M. Stipcich: The stabilization of martensite in Cu-Zn-Al-Ti-B shape memory alloys. Fifth European symposium on martensitic transformations and shape memory alloys. J. Phys. 11(8), 135 (2001).

    Google Scholar 

  90. B.M. Rabeeh, M.M. El Batanouny, and A.E. El Ashram: Microstructural characterization and solid state processing of Cu-Zn-Al shape memory alloy. Can. J. Mech. Sci. Eng. 2(2), 11 (2011).

    Google Scholar 

  91. L. Janke, C. Czaderski, M. Motavalli, and J. Ruth: Application of shape memory alloys in civil engineering structures–Overview, limits and new ideas. Mater. Struct. RILEM 38(279), 578 (2005).

    Article  CAS  Google Scholar 

  92. M.G. Rashed: Civil engineering application of shape memory alloys. In Proceedings of 1st International Conference on Advances in Civil Engineering, CUET, Chittagong, Bangladesh, 2012; p. 1.

    Google Scholar 

  93. Y. Sutou, T. Omoria, J.J. Wang, R. Kainuma, and K. Ishida: Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Mater. Sci. Eng., A 378, 278 (2004).

    Article  CAS  Google Scholar 

  94. S.R. Debbarma and S. Saha: Review of shape memory alloys applications in civil structures, and analysis for its potential as reinforcement in concrete flexural members. Int. J. Civ. Struct. Eng. 2(3), 924 (2012).

    Google Scholar 

  95. J. Sepúlveda, R. Boroschek, R. Herrera, O. Moroni, and M. Sarrazin: Steel beam–column connection using copper-based shape memory alloy dampers. J. Constr. Steel Res. 64(4), 429 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupa Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, R. A look into Cu-based shape memory alloys: Present scenario and future prospects. Journal of Materials Research 29, 1681–1698 (2014). https://doi.org/10.1557/jmr.2014.189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.189

Navigation