Skip to main content
Log in

Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting

  • Metal
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Materials produced by selective laser melting (SLM) experience a thermal history that is markedly different from that encountered by conventionally produced materials. In particular, a very high cooling rate from the melt is combined with cyclical reheating upon deposition of subsequent layers. Using atom-probe tomography (APT), we investigated how this nonconventional thermal history influences the phase-transformation behavior of maraging steels (Fe–18Ni–9Co–3.4Mo–1.2Ti) produced by SLM. We found that despite the “intrinsic heat treatment” and the known propensity of maraging steels for rapid clustering and precipitation, the material does not show any sign of phase transformation in the as-produced state. Upon aging, three different types of precipitates, namely (Fe,Ni,Co)3(Ti,Mo), (Fe,Ni,Co)3(Mo,Ti), and (Fe,Ni,Co)7Mo6 (μ phase), were observed as well as martensite-to-austenite reversion around regions of the retained austenite. The concentration of the newly formed phases as quantified by APT closely matches thermodynamic equilibrium calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. W. Sha and Z. Guo: Maraging Steels: Modelling of Microstructure, Properties and Applications (Woodhead Publishing Ltd., Cambridge, UK, 2009).

    Book  Google Scholar 

  2. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012).

    Article  CAS  Google Scholar 

  3. J-P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56(2), 730–759 (2007).

    Article  Google Scholar 

  4. B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: Part II. Experimental investigation and discussion. Metall. Mater. Trans. A 39(9), 2237–2245 (2008).

    Article  Google Scholar 

  5. B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: Part I. Numerical calculations. Metall. Mater. Trans. A 39(9), 2228–2236 (2008).

    Article  Google Scholar 

  6. K. Kempen, E. Yasa, L. Thijs, J-P. Kruth, and J. Van Humbeeck: Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Phys. Procedia 12, 255–263 (2011).

    Article  CAS  Google Scholar 

  7. L. Qian, J. Mei, J. Liang, and X. Wu: Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti–6Al–4V samples. Mater. Sci. Technol. 21(5), 597–605 (2005).

    Article  CAS  Google Scholar 

  8. A. Shekhter, H. Aaronson, and M. Miller: Effect of aging and deformation on the microstructure and properties of Fe-Ni-Ti maraging steel. Metall. Mater. Trans. A 35A(3), 973–983 (2004).

    Article  CAS  Google Scholar 

  9. E.V. Pereloma, R.A. Stohr, M.K. Miller, and S.P. Ringer: Observation of precipitation evolution in Fe-Ni-Mn-Ti-Al maraging steel by atom probe tomography. Metall. Mater. Trans. A 40(13), 3069–3075 (2009).

    Article  Google Scholar 

  10. R.F. Decker, J.T. Eash, and A.J. Goldman: 18% nickel maraging steel. Trans. ASM 55, 58–76 (1962).

    Google Scholar 

  11. R.F. Decker: Source Book on Maraging Steels (American Society for Metals, Metals Park, OH, 1979).

    Google Scholar 

  12. W. Sha, A. Cerezo, and G. Smith: Phase chemistry and precipitation reactions in maraging steels: Part I. Introduction and study of Co-containing C-300 steel. Metall. Trans. A 24(6), 1221–1232 (1993).

    Article  Google Scholar 

  13. W. Sha, A. Cerezo, and G. Smith: Phase chemistry and precipitation reactions in maraging steels: Part III. Model alloys. Metall. Trans. A 24(6), 1241–1249 (1993).

    Article  Google Scholar 

  14. W. Sha, A. Cerezo, and G. Smith: Phase chemistry and precipitation reactions in maraging steels: Part IV. Discussion and conclusions. Metall. Trans. A 24(6), 1251–1256 (1993).

    Article  Google Scholar 

  15. V. Vasudevan, S. Kim, and C. Wayman: Precipitation reactions and strengthening behavior in 18 wt pct nickel maraging steels. Metall. Trans. A 21A(10), 2655 (1990).

    Article  CAS  Google Scholar 

  16. R. Tewari, S. Mazumder, I.S. Batra, G.K. Dey, and S. Banerjee: Precipitation in 18 wt% Ni maraging steel of grade 350. Acta Mater. 48(5), 1187–1200 (2000).

    Article  CAS  Google Scholar 

  17. C. Servant and N. Bouzid: Influence of the increasing content of Mo on the precipitation phenomena occurring during tempering in the maraging alloy Fe-12Mn-9Co-5Mo. Acta Metall. 36(10), 2771–2778 (1988).

    Article  CAS  Google Scholar 

  18. J.B. Lecomte, C. Servant, and G. Cizeron: A comparison of the structural evolution occurring during anisothermal or isothermal treatments in the case of nickel and manganese type maraging alloys. J. Mater. Sci. 203339–3352 (1985).

    Article  CAS  Google Scholar 

  19. U. Viswanathan, G. Dey, and M. Asundi: Precipitation hardening in 350 grade maraging steel. Metall. Trans. A 24A(11), 2429 (1993).

    Article  CAS  Google Scholar 

  20. M.N. Rao: Progress in understanding the metallurgy of 18% nickel maraging steels. Int. J. Mater. Res. 97(11), 1594–1607 (2006).

    Article  CAS  Google Scholar 

  21. E.A. Marquis and J.M. Hyde: Applications of atom-probe tomography to the characterisation of solute behaviours. Mater. Sci. Eng., R 69(4–5), 37–62 (2010).

    Article  Google Scholar 

  22. B. Gault, M.P. Moody, J.M. Cairney, and S.P. Ringer: Atom Probe Microscopy, Springer Series in Materials Science (Springer Verlag, New York, 2012), Vol. 160.

    Google Scholar 

  23. D. Larson, T. Prosa, and T. Kelly: Local Electrode Atom Probe Tomography — A User’s Guide (Springer, New York, NY, 2013).

    Book  Google Scholar 

  24. O. Hellman: Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6437–444 (2000).

    Article  CAS  Google Scholar 

  25. L.T. Stephenson, M.P. Moody, B. Gault, and S.P. Ringer: Nearest neighbour diagnostic statistics on the accuracy of APT solute cluster characterisation. Philos. Mag. 93(8), 975–989 (2013).

    Article  CAS  Google Scholar 

  26. O. Dmitrieva, D. Ponge, G. Inden, J. Millán, P. Choi, J. Sietsma, and D. Raabe: Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Mater. 59(1), 364–374 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Jägle.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jägle, E.A., Choi, PP., Van Humbeeck, J. et al. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. Journal of Materials Research 29, 2072–2079 (2014). https://doi.org/10.1557/jmr.2014.204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.204

Navigation