Skip to main content
Log in

The effect of microstructure heterogeneity on the microscale deformation of ultrafine-grained aluminum

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A combined approach of scanning electron microscopy and digital image correlation was used to examine microstructure-scale strain localization and active deformation mechanisms in ultrafine-grained (UFG) high purity (99.99%) aluminum processed by equal-channel angular pressing (ECAP). The results from tensile tests demonstrate a strong relationship between the heterogeneous microstructure and strain localization. The localized deformation was investigated in areas that contain significantly different microstructural features typical of ECAP processed aluminum. It was found that areas of the UFG microstructure containing primarily low angle grain boundaries deformed by dislocation slip and behaved similarly to a coarse-grained material. The greatest strain localization occurred at high angle grain boundaries (HAGBs) separating distinct microstructure regions and with median surface trace angles of approximately 26.6°. In areas of banded microstructure, shear strain localization as high as 30% and shear displacements of up to 500 nm occurred at the HAGBs separating bands, suggesting grain boundary sliding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, and Y.T. Zhu: Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4), 33 (2006).

    Google Scholar 

  2. R.Z. Valiev, N.A. Enikeev, M.Y. Murashkin, V.U. Kazykhanov, and X. Sauvage: On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scr. Mater. 63, 949 (2010).

    CAS  Google Scholar 

  3. R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).

    CAS  Google Scholar 

  4. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5 (2002).

    CAS  Google Scholar 

  5. J. Dvorak, V. Sklenicka, and Z. Horita: Microstructural evolution and mechanical properties of high purity aluminium processed by equal-channel angular pressing. Mater. Trans. 49, 15 (2008).

    CAS  Google Scholar 

  6. Y. Estrin and A. Vinogradov: Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 61, 782 (2013).

    CAS  Google Scholar 

  7. T.C. Lowe: Metals and alloys nanostructured by severe plastic deformation: Commercialization pathways. JOM 58(4), 28 (2006).

    Google Scholar 

  8. R.Z. Valiev, I.P. Semenova, V.V. Latysh, H. Rack, T.C. Lowe, J. Petruzelka, L. Dluhos, D. Hrusak, and J. Sochova: Nanostructured titanium for biomedical applications. Adv. Biomater. 10, B15 (2008).

    CAS  Google Scholar 

  9. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 35, 143 (1996).

    CAS  Google Scholar 

  10. T.G. Langdon: The principles of grain refinement in equal-channel angular pressing. Mater. Sci. Eng., A 462, 3 (2007).

    Google Scholar 

  11. T.G. Langdon: Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 61, 7035 (2013).

    CAS  Google Scholar 

  12. M. Furukawa, Z. Horita, and T.G. Langdon: Factors influencing the shearing patterns in equal-channel angular pressing. Mater. Sci. Eng., A 332, 97 (2002).

    Google Scholar 

  13. Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing. Metall. Mater. Trans. A 29, 2245 (1998).

    Google Scholar 

  14. I.J. Beyerlein and L.S. Tóth: Texture evolution in equal-channel angular extrusion. Prog. Mater. Sci. 54, 427 (2009).

    CAS  Google Scholar 

  15. S.D. Terhune, D.L. Swisher, K. Oh-ishi, Z. Horita, T.G. Langdon, and T.R. McNelley: An investigation of microstructure and grain-boundary evolution during ECA pressing of pure aluminum. Metall. Mater. Trans. A 33, 2173 (2002).

    Google Scholar 

  16. K. Oh-ishi, A.P. Zhilyaev, and T.R. McNelley: Effect of strain path on evolution of deformation bands during ECAP of pure aluminum. Mater. Sci. Eng., A 410–411, 183 (2005).

    Google Scholar 

  17. A.P. Zhilyaev, D.L. Swisher, K. Oh-ishi, T.G. Langdon, and T.R. McNelley: Microtexture and microstructure evolution during processing of pure aluminum by repetitive ECAP. Mater. Sci. Eng., A 429, 137 (2006).

    Google Scholar 

  18. M. Reihanian, R. Ebrahimi, M.M. Moshksar, D. Terada, and N. Tsuji: Microstructure quantification and correlation with flow stress of ultrafine grained commercially pure Al fabricated by equal channel angular pressing (ECAP). Mater. Charact. 59, 1312 (2008).

    CAS  Google Scholar 

  19. S. Li, I.J. Beyerlein, D.J. Alexander, and S.C. Vogel: Texture evolution during equal channel angular extrusion: Effect of initial texture from experiment and simulation. Scr. Mater. 52, 1099 (2005).

    CAS  Google Scholar 

  20. Y.T. Zhu and T.C. Lowe: Observations and issues on mechanisms of grain refinement during ECAP process. Mater. Sci. Eng., A 291, 46 (2000).

    Google Scholar 

  21. M. Kawasaki, Z. Horita, and T.G. Langdon: Microstructural evolution in high purity aluminum processed by ECAP. Mater. Sci. Eng., A 524, 143 (2009).

    Google Scholar 

  22. N.Q. Chinh, P. Szommer, Z. Horita, and T.G. Langdon: Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation. Adv. Mater. 18, 34 (2006).

    CAS  Google Scholar 

  23. N.Q. Chinh, P. Szommer, T. Csanádi, and T.G. Langdon: Flow processes at low temperatures in ultrafine-grained aluminum. Mater. Sci. Eng., A 434, 326 (2006).

    Google Scholar 

  24. N.Q. Chinh, T. Győri, R.Z. Valiev, P. Szommer, G. Varga, K. Havancsák, and T.G. Langdon: Observations of unique plastic behavior in micro-pillars of an ultrafine-grained alloy. MRS Commun. 2, 75 (2012).

    CAS  Google Scholar 

  25. I. Sabirov, M.R. Barnett, Y. Estrin, I. Timokhina, and P.D. Hodgson: Deformation mechanisms in an ultra-fine grained Al alloy. Int. J. Mater. Res. 100, 1679 (2009).

    CAS  Google Scholar 

  26. I. Sabirov, M.R. Barnett, Y. Estrin, and P.D. Hodgson: The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy. Scr. Mater. 61, 181 (2009).

    CAS  Google Scholar 

  27. I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, and P.D. Hodgson: Tensile deformation of an ultrafine-grained aluminium alloy: Micro shear banding and grain boundary sliding. Acta Mater. 56, 2223 (2008).

    CAS  Google Scholar 

  28. K.V. Ivanov and E.V. Naydenkin: Grain boundary sliding in ultrafine-grained aluminum under tension at room temperature. Scr. Mater. 66, 511 (2012).

    CAS  Google Scholar 

  29. J. May, H.W. Höppel, and M. Göken: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr. Mater. 53, 189 (2005).

    CAS  Google Scholar 

  30. H.W. Höppel, J. May, P. Eisenlohr, and M. Göken: Strain rate sensitivity of ultrafine-grained materials. Z. Metallkd. 96, 566 (2005).

    Google Scholar 

  31. A. Böhner, V. Maier, K. Durst, H.W. Höppel, and M. Göken: Macro- and nanomechanical properties and strain rate sensitivity of accumulative roll bonded and equal channel angular pressed ultrafine-grained materials. Adv. Eng. Mater. 13, 251 (2011).

    Google Scholar 

  32. W.H. Peters and W.F. Ranson: Digital imaging techniques in experimental stress analysis. Opt. Eng. 21, 427 (1982).

    Google Scholar 

  33. M.A. Sutton, W.J. Wolters, W.H. Peters, W.F. Ranson, and S.R. McNeill: Determination of displacements using an improved digital correlation method. Image Vision Comput. 1, 133 (1983).

    Google Scholar 

  34. M.A. Sutton, J-J. Orteu, and H. Schreier: Digital Image Correlation (DIC), in Image Correlation for Shape, Motion and Deformation Measurements (Springer US, Boston, MA, 2009), pp. 81–116.

    Google Scholar 

  35. B. Ahn, E.J. Lavernia, and S.R. Nutt: Dynamic observations of deformation in an ultrafine-grained Al–Mg alloy with bimodal grain structure. J. Mater. Sci. 43, 7403 (2008).

    CAS  Google Scholar 

  36. B. Ahn and S.R. Nutt: Strain mapping of Al–Mg Alloy with multi-scale grain structure using digital image correlation method. Exp. Mech. 50, 117 (2010).

    CAS  Google Scholar 

  37. Y. Zhang, T.D. Topping, E.J. Lavernia, and S.R. Nutt: Dynamic micro-strain analysis of ultrafine-grained aluminum magnesium alloy using digital image correlation. Metall. Mater. Trans. A 45, 47 (2013).

    Google Scholar 

  38. K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon: Development of a multi-pass facility for equal-channel angular pressing to high total strains. Mater. Sci. Eng., A 281, 82 (2000).

    Google Scholar 

  39. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: The shearing characteristics associated with equal-channel angular pressing. Mater. Sci. Eng., A 257, 328 (1998).

    Google Scholar 

  40. K. Oh-ishi, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Optimizing the rotation conditions for grain refinement in equal-channel angular pressing. Metall. Mater. Trans. A 29, 2011 (1998).

    Google Scholar 

  41. A.D. Kammers and S. Daly: Self-assembled nanoparticle surface patterning for improved digital image correlation in a scanning electron microscope. Exp. Mech. 53, 1333 (2013).

    Google Scholar 

  42. Vic-2D [software]: Correlated Solutions Inc, Columbia, SC, 2009.

  43. A.D. Kammers and S. Daly: Digital image correlation under scanning electron microscopy: Methodology and validation. Exp. Mech. 53, 1743 (2013).

    Google Scholar 

  44. M.A. Sutton, N. Li, D.C. Joy, A.P. Reynolds, and X. Li: Scanning electron microscopy for quantitative small and large deformation measurements Part I: SEM imaging at magnifications from 200 to 10,000. Exp. Mech. 47, 775 (2007).

    Google Scholar 

  45. M.A. Sutton, N. Li, D. Garcia, N. Cornille, J-J. Orteu, S.R. McNeill, H.W. Schreier, X. Li, and A.P. Reynolds: Scanning electron microscopy for quantitative small and large deformation measurements Part II: Experimental validation for magnifications from 200 to 10,000. Exp. Mech. 47, 789 (2007).

    Google Scholar 

  46. M.A. Sutton, N. Li, D. Garcia, N. Cornille, J-J. Orteu, S.R. McNeill, H.W. Schreier, and X. Li: Metrology in a scanning electron microscope: Theoretical developments and experimental validation. Meas. Sci. Technol. 17, 2613 (2006).

    CAS  Google Scholar 

  47. M. Bornert, F. Brémand, P. Doumalin, J-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse: Assessment of digital image correlation measurement errors: Methodology and results. Exp. Mech. 49, 353 (2009).

    Google Scholar 

  48. J. Luster and M.A. Morris: Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships. Metall. Mater. Trans. A 26, 1745 (1995).

    Google Scholar 

  49. T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int. J. Plast. 25, 1655 (2009).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under Grant No. 092753 and by the Rackham Graduate School Non-Traditional Student Fellowship from the University of Michigan. The authors would like to acknowledge Sara Nitz for her sample preparation work and experimental assistance. Portions of this work were performed at the Electron Microbeam Analysis Laboratory (EMAL) at the University of Michigan and at the Lurie Nanofabrication Facility (LNF), a member of the National Nanotechnology Infrastructure Network, which is supported in part by the National Science Foundation. The work was also supported in part by the National Science Foundation under Grant No. DMR-1160966 (JW-N and TGL) and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS (TGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha Daly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammers, A.D., Wongsa-Ngam, J., Langdon, T.G. et al. The effect of microstructure heterogeneity on the microscale deformation of ultrafine-grained aluminum. Journal of Materials Research 29, 1664–1674 (2014). https://doi.org/10.1557/jmr.2014.207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.207

Navigation