Skip to main content
Log in

On acquiring true stress–strain curves for sheet specimens using tensile test and FE analysis based on a local necking criterion

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, we obtain true stress–strain (SS) curves for a sheet specimen under consideration of local necking and material anisotropy. We first extract the SS curve up to the diffuse necking point from the tensile test load–displacement data. The curve’s part after the onset of diffuse necking is extrapolated by the weighted-average method proposed by Ling [Y. Ling, AMP J. Technol. 5, 37–48 (1996)]. Initiation of local necking is predicted by means of the minor-to-major strain ratio in the specimen’s center. We propose a criterion to determine the strain ratio at the onset of local necking and the major strain corresponding to the strain ratio at local necking. We complete the true SS curve by cutting off the SS curve at the major strains corresponding to the local necking or apparent fracture point. Finally, the effects of material anisotropy on SS curves are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16

Similar content being viewed by others

References

  1. J.D. Bressan and R.K. Unfer: Construction and validation tests of a torsion test machine. J. Mater. Process. Technol. 179, 23–29 (2006).

    Article  Google Scholar 

  2. E.E. Cabezas and D.J. Celentano: Experimental and numerical analysis of the tensile test using sheet specimens. Finite Elem. Anal. Des. 40, 555–575 (2004).

    Article  Google Scholar 

  3. S. Dumoulin, L. Tabourot, C. Chappuis, P. Vacher, and R. Arrieux: Determination of the equivalent stress-equivalent strain relationship of a copper sample under tensile loading. J. Mater. Process. Technol. 133, 79–83 (2003).

    Article  CAS  Google Scholar 

  4. J.C. Gelin and O. Ghouati: The inverse approach for the determination of constitutive equations in metal forming. Ann. CIRP 44, 189–192 (1995).

    Article  Google Scholar 

  5. N. Huber and C. Tsakmakis: Determination of constitutive properties from spherical indentation data using neural networks. Part II: Plasticity with nonlinear isotropic and kinematic hardening. J. Mech. Phys. Solids 47, 1589–1607 (1999).

    Article  Google Scholar 

  6. H. Lee, J.H. Lee, and G.M. Pharr: A numerical approach to spherical indentation techniques for material property evaluation. J. Mech. Phys. Solids 53, 2037–2069 (2005).

    Article  CAS  Google Scholar 

  7. G. Mirone: A new model for the elastoplastic characterization and the stress-strain deformation on the necking section of a tensile specimen. Int. J. Solids Struct. 41, 3545–3564 (2004).

    Article  Google Scholar 

  8. H.C. Hyun, J.H. Lee, and H. Lee: Mathematical expressions for stress-strain curve of metallic material. Trans. KSME 32, 21–28 (2008).

    Article  Google Scholar 

  9. P.W. Bridgman: Studies in Large Plastic Flow and Fracture (McGraw Hill Book Company Inc., New York, 1952).

    Google Scholar 

  10. M.S. Joun, I.S. Choi, J.G. Eom, and M.C. Lee: Finite element analysis of tensile testing with emphasis on necking. Comput. Mater. Sci. 41, 63–69 (2007).

    Article  Google Scholar 

  11. M.S. Joun, J.G. Eom, and M.C. Lee: A new method for acquiring true stress-strain curves over a large range of strains using a tensile test and finite element method. Mech. Mater. 40, 586–593 (2008).

    Article  Google Scholar 

  12. Y. Ling: Uniaxial true stress-strain after necking. AMP J. Technol. 5, 37–48 (1996).

    Google Scholar 

  13. H. Tao, N. Zhang, and W. Tong: An iterative procedure for determining effective stress-strain curves of sheet metals. Int. J. Mech. Mater. Des. 5, 13–27 (2009).

    Article  Google Scholar 

  14. K.S. Zhang and Z.H. Li: Numerical analysis of the stress-strain curve and fracture initiation for ductile material. Eng. Fract. Mech. 49, 235–241 (1994).

    Article  Google Scholar 

  15. N. Tardif and S. Kyriakides: Determination of anisotropy and material hardening for aluminum sheet metal. Int. J. Solids Struct. 49, 3496–3506 (2012).

    Article  CAS  Google Scholar 

  16. Z.L. Zhang, M. Hauge, J. Odegard, and C. Thaulow: Determining material true stress-strain curve from tensile specimens with rectangular cross-section. Int. J. Solids Struct. 36, 3497–3516 (1999).

    Article  Google Scholar 

  17. I. Scheider, W. Brocks, and A. Cornec: Procedure for the determination of true stress-strain curves from tensile tests with rectangular cross-section specimens. ASME J. Eng. Mater. Technol. 126, 70–76 (2004).

    Article  Google Scholar 

  18. H.C. Hyun, M. Kim, H. Lee, and N. Kim: Sectional FE forming limit models of Zircaloy-4 and Zirlo sheets for stamping process of spacer grids of nuclear fuel rods (2014, in preparation).

  19. H.C. Hyun, M. Kim, H. Lee, and N. Kim: Dependency of forming limit stress diagram on yield criterion in Zircaloy-4 and Zirlo Sheets (2014, in preparation).

  20. ABAQUS User’s Manual, 2010. Version 6.10 (Dassault Systemes Simulia Corp., Providence, RI).

  21. A.L. Gurson: Continuum theory of ductile rupture by void nucleation and growth: Part-1: Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977).

    Article  Google Scholar 

  22. V. Tvergaard and A. Needleman: Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32, 157–169 (1984).

    Article  Google Scholar 

  23. Z.L. Zhang, J. Ødegard, O.P. Sovik, and C. Thaulow: A study on determining true stress–strain curve for anisotropic materials with rectangular tensile bars. Int. J. Solids Struct. 38, 4489–4505 (2001).

    Article  Google Scholar 

  24. R. Hill: On discontinuous plastic state, with special reference to localized necking in thin sheets. J. Mech. Phys. Solids 1, 19–30 (1952).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. NRF-2012 R1A2A2A 01046480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minsoo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyun, H.C., Kim, M., Bang, S. et al. On acquiring true stress–strain curves for sheet specimens using tensile test and FE analysis based on a local necking criterion. Journal of Materials Research 29, 695–707 (2014). https://doi.org/10.1557/jmr.2014.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.24

Navigation