Skip to main content
Log in

Nano-TiB2 reinforced ultrafine-grained pure Al produced by flux-assisted synthesis and asymmetrical rolling

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In situ nano-TiB2 reinforced ultrafine-grained (UFG) Al composites were prepared via combined processes of flux-assisted synthesis (FAS) and asymmetrical rolling (ASR). The UFG Al composite with an ASR reduction ratio of 97% exhibits an average matrix grain size of 380 nm and an average TiB2 particulate size of 50 nm. Dislocation density in the composites is higher than that corresponding to the high purity (99.99 wt%) Al under identical processing conditions. The yield and ultimate tensile strength values of the UFG Al composites processed with an ASR reduction ratio of 97% are approximately 9 and 5 times higher relative to those of the initial coarse-grained Al, respectively. Moreover, the UFG Al composite with an ASR reduction ratio of 97% exhibits a higher elongation than that corresponding to the UFG pure Al under identical processing conditions, suggesting that nanoparticulates contribute to the overall plastic deformation when the matrix grains are refined to the UFG regime. Moreover, analysis of the strengthening behavior reveals no clear evidence that Orowan strengthening contributes significantly to the overall yield strength of the Al nanocomposites studied herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. Y. Li, Y.H. Zhao, V. Ortalan, W. Liu, Z.H. Zhang, R.G. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung: Investigation of aluminum-based nanocomposites with ultra-high strength. Mater. Sci. Eng., A 527, 305 (2009).

    Google Scholar 

  2. T. Lin, Q. Yang, C. Tan, B. Liu, and A. McDonald: Processing and ballistic performance of lightweight armors based on ultra-fine-grain aluminum composites. J. Mater. Sci. 43, 7344 (2008).

    CAS  Google Scholar 

  3. Z. Zhang, T. Topping, Y. Li, R. Vogt, Y. Zhou, C. Haines, J. Paras, D. Kapoor, J.M. Schoenung, and E.J. Lavernia: Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scr. Mater. 65, 652 (2011).

    CAS  Google Scholar 

  4. N.A. Krasilnikov and A. Sharafutdiniv: High strength and ductility of nanostructured Al-based alloy, prepared by high-pressure technique. Mater. Sci. Eng., A 463, 74 (2007).

    Google Scholar 

  5. M. Chauhan, I. Roy, and F. Mohamed: High-strain-rate superplasticity in bulk cryomilled ultra-fine-grained 5083 Al. Metall. Mater. Trans. A 37, 2715 (2006).

    Google Scholar 

  6. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung: Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 62, 141 (2014).

    CAS  Google Scholar 

  7. D. Lahiri, S.R. Bakshi, A.K. Keshri, Y. Liu, and A. Agarwal: Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites. Mater. Sci. Eng., A 523, 263 (2009).

    Google Scholar 

  8. R. Vogt, Z. Zhang, Y. Li, M. Bonds, N.D. Browning, E.J. Lavernia, and J.M. Schoenung: The absence of thermal expansion mismatch strengthening in nanostructured metal–matrix composites. Scr. Mater. 61, 1052 (2009).

    CAS  Google Scholar 

  9. K. Edalati, M. Ashida, Z. Horita, T. Matsui, and H. Kato: Wear resistance and tribological features of pure aluminum and Al-Al2O3 composites consolidated by high-pressure torsion. Wear 310, 83 (2014).

    CAS  Google Scholar 

  10. Y. Li, Y.J. Lin, Y.H. Xiong, J.M. Schoenung, and E.J. Lavernia: Extended twinning phenomena in Al-4%Mg alloys/B4C nanocomposite. Scr. Mater. 64, 133 (2011).

    CAS  Google Scholar 

  11. N. Chawla and K.K. Chawla: Metal matrix composites (Springer, New York, NY, 2006).

    Google Scholar 

  12. M. Rosso: Ceramic and metal matrix composites: Routes and properties. J. Mater. Process. Technol. 175, 364 (2006).

    CAS  Google Scholar 

  13. M.F. Amateau: Progress in the development of graphite-aluminum composites using liquid infiltration technology. J. Compos. Mater. 10, 279 (1976).

    CAS  Google Scholar 

  14. S. Bathula, R.C. Anandani, A. Dhar, and A.K. Srivastava: Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering. Mater. Sci. Eng., A 545, 97 (2012).

    CAS  Google Scholar 

  15. S. Salimi, H. Izadi, and A.P. Gerlich: Fabrication of an aluminum–carbon nanotube metal matrix composite by accumulative roll-bonding. J. Mater. Sci. 46, 409 (2011).

    CAS  Google Scholar 

  16. T. Laha, Y. Chen, D. Lahiri, and A. Agarwal: Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Composites, Part A 40, 589 (2009).

    Google Scholar 

  17. C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li, and Q. Cui: An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv. Mater. 19, 1128 (2007).

    CAS  Google Scholar 

  18. V. Teixeira, P. Soares, A.J. Martins, J. Carneiro, and F. Cerqueira: Nanocomposite metal Amorphous-carbon thin films deposited by hybrid PVD and PECVD technique. J. Nanosci. Nanotechnol. 9, 4061 (2009).

    CAS  Google Scholar 

  19. S.C. Tjong and Z.Y. Ma: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng., R 29, 49 (2000).

    Google Scholar 

  20. L. Lu, M. Lai, and F. Chen: Al-4 wt% Cu composite reinforced with in situ TiB2 particles. Acta Mater. 45, 4297 (1997).

    CAS  Google Scholar 

  21. D.R. Kongshaug, J. Ferguson, B.F. Schultz, and P.K. Rohatgi: Reactive stir mixing of Al–Mg/Al2O3np metal matrix nanocomposites: Effects of Mg and reinforcement concentration and method of reinforcement incorporation. J. Mater. Sci. 49, 2106 (2014).

    CAS  Google Scholar 

  22. Z. Li, L. Fu, B. Fu, and A. Shan: Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling. Mater. Sci. Eng., A 558, 309 (2012).

    CAS  Google Scholar 

  23. Y-M. Hwang and G-Y. Tzou: Analytical and experimental study on asymmetrical sheet rolling. Int. J. Mech. Sci. 39, 289 (1997).

    Google Scholar 

  24. T. Ungár: Dislocation densities, arrangements and character from x-ray diffraction experiments. Mater. Sci. Eng., A 309–310, 14 (2001).

    Google Scholar 

  25. T. Ungar, J. Gubicza, G. Ribarik, and A. Borbely: Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34, 298 (2001).

    CAS  Google Scholar 

  26. T. Ungar, I. Dragomir, A. Revesz, and A. Borbely: The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 32, 992 (1999).

    CAS  Google Scholar 

  27. D.N. Seidman, E.A. Marquis, and D.C. Dunand: Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al (Sc) alloys. Acta Mater. 50, 4021 (2002).

    CAS  Google Scholar 

  28. P. Schumacher, A. Greer, J. Worth, P. Evans, M. Kearns, P. Fisher, and A. Green: New studies of nucleation mechanisms in aluminium alloys: Implications for grain refinement practice. Mater. Sci. Technol. 14, 394 (1998).

    CAS  Google Scholar 

  29. C-S. Kim, I. Sohn, M. Nezafati, J.B. Ferguson, B. Schultz, Z. Bajestani-Gohari, P. Rohatgi, and K. Cho: Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J. Mater. Sci. 48, 4191 (2013).

    CAS  Google Scholar 

  30. M. Hillert: Inhibition of grain growth by second-phase particles. Acta Metall. 36, 3177 (1988).

    CAS  Google Scholar 

  31. B.F. Schultz, J.B. Ferguson, and P.K. Rohatgi: Microstructure and hardness of Al2O3 nanoparticle reinforced Al–Mg composites fabricated by reactive wetting and stir mixing. Mater. Sci. Eng., A 530, 87 (2011).

    CAS  Google Scholar 

  32. S.C. Tjong and K.F. Tam: Mechanical and thermal expansion behavior of hipped aluminum–TiB2 composites. Mater. Chem. Phys. 97, 91 (2006).

    CAS  Google Scholar 

  33. M. Vogelsang, R. Arsenault, and R. Fisher: An in situ HVEM study of dislocation generation at Al/SiC interfaces in metal matrix composites. Metall. Trans. A 17, 379 (1986).

    Google Scholar 

  34. L.P. Evers, W.A.M. Brekelmans, and M.G.D. Geers: Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int. J. Solids Struct. 41, 5209 (2004).

    Google Scholar 

  35. M.F. Ashby: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 (1970).

    CAS  Google Scholar 

  36. T.H. Courtney: Mechanical Behavior of Materials (Waveland Press, Long Grove, 2005).

    Google Scholar 

  37. J.E. Bailey and P.B. Hirsch: The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. 5, 485 (1960).

    CAS  Google Scholar 

  38. A.M. Redsten, E.M. Klier, A.M. Brown, and D.C. Dunand: Mechanical properties and microstructure of cast oxide-dispersion-strengthened aluminum. Mater. Sci. Eng., A 201, 88 (1995).

    Google Scholar 

  39. E.O. Hall: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64, 747 (1951).

    Google Scholar 

  40. W.F. Smith and J. Hashemi: Foundations of Materials Science and Engineering, 4th ed. (McGraw-Hill, New York, 2006).

    Google Scholar 

  41. C.Y. Yu, P.W. Kao, and C.P. Chang: Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Mater. 53, 4019 (2005).

    CAS  Google Scholar 

  42. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893 (2002).

    CAS  Google Scholar 

  43. C. Carlton and P. Ferreira: What is behind the inverse Hall–Petch effect in nanocrystalline materials?. Acta Mater. 55, 3749 (2007).

    CAS  Google Scholar 

  44. T. Nieh and J. Wadsworth: Hall-Petch relation in nanocrystalline solids. Scr. Metall. Mater. 25, 955 (1991).

    CAS  Google Scholar 

  45. N. Hansen: The effect of grain size and strain on the tensile flow stress of aluminium at room temperature. Acta Metall. 25, 863 (1977).

    CAS  Google Scholar 

  46. N. Takata, Y. Ohtake, K. Kita, K. Kitagawa, and N. Tsuji: Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates. Scr. Mater. 60, 590 (2009).

    CAS  Google Scholar 

  47. C.C. Koch: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49, 657 (2003).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors (ZL, DC, HW, and AS) would like to acknowledge support from the National Natural Science Foundation of China (50671062) and the Aerospace Foundation of Shanghai (HTJ10-17). The financial support (ZL and EJL) from the US National Science Foundation (NSF DMR-1210437) is also gratefully appreciated. Furthermore, the author (ZL) would like to thank the financial support from the China Scholarship Council (No. 201306230030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Li or Dong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, D., Wang, H. et al. Nano-TiB2 reinforced ultrafine-grained pure Al produced by flux-assisted synthesis and asymmetrical rolling. Journal of Materials Research 29, 2514–2524 (2014). https://doi.org/10.1557/jmr.2014.280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.280

Navigation