Skip to main content

Advertisement

Log in

Probing local electrochemical activity within yttria-stabilized-zirconia via in situ high-temperature atomic force microscopy

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Considerable interest in understanding interfacial phenomena occurring across nanostructured solid oxide fuel cell (SOFC) membrane electrode assemblies has increased demand for in situ characterization techniques with higher resolution. We briefly outline recent advancements in atomic force microscopy (AFM) instrumentation and subsystems in realizing real time imaging at high temperatures and ambient pressures, and the use of these in situ, multi-stimuli probes in collecting local information related to physical and fundamental processes. Here we demonstrate direct probing of local surface potential gradients related to the ionic conductivity of yttria-stabilized zirconia (YSZ) within symmetric SOFCs under intermediate operating temperatures (500–600 °C) via variable temperature scanning surface potential microscopy (VT-SSPM). The conductivity values obtained at different temperatures are then used to estimate the activation energy. These locally collected conductivity and activation energy values are subsequently compared to macroscopic electrochemical impedance results and bulk literature values, thus supporting the validity of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, and J. Vohs: Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17 (2004).

    Article  CAS  Google Scholar 

  2. S. Park, J.M. Vohs, and R.J. Gorte: Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265 (2000).

    Article  CAS  Google Scholar 

  3. Z. Shao, S.M. Haile, J. Ahn, P.D. Ronney, Z. Zhan, and S.A. Barnett: A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435, 795 (2005).

    Article  CAS  Google Scholar 

  4. D. Han, X. Liu, F. Zeng, J. Qian, T. Wu, and Z. Zhan: A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Sci. Rep. 2, 1 (2012).

    Google Scholar 

  5. T.H. Etsell and S.N. Flengas: Electrical properties of solid oxide electrolytes. Chem. Rev. 70, 339 (1970).

    Article  CAS  Google Scholar 

  6. J.B. Goodenough: Oxide-ion electrolytes. Annu. Rev. Mater. Res. 33, 91 (2003).

    Article  CAS  Google Scholar 

  7. R.M. Ormerod: Solid oxide fuel cells. Chem. Soc. Rev. 32, 17 (2002).

    Article  Google Scholar 

  8. J.W. Fergus: Electrolytes for solid oxide fuel cells. J. Power Sources 162, 30 (2006).

    Article  CAS  Google Scholar 

  9. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, and J. Santamaria: Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321, 676 (2008).

    Article  CAS  Google Scholar 

  10. H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, and F.B. Prinz: High-performance ultrathin solid oxide fuel cells for low-temperature operation. J. Electrochem. Soc. 154, 20 (2007).

    Article  Google Scholar 

  11. M. Li, M.J. Pietrowski, R.A.D. Souza, H. Zhang, I.M. Reaney, S.N. Cook, J.A. Kilner, and D.C. Sinclair: A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31 (2014).

    Article  CAS  Google Scholar 

  12. Z. Wang, M. Cheng, Z. Bia, Y. Dong, H. Zhang, J. Zhang, Z. Feng, and C. Li: Structure and impedance of ZrO2 doped with Sc2O3 and CeO2. Mater. Lett. 59, 2579 (2005).

    Article  CAS  Google Scholar 

  13. C. Xia and M. Liu: Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing. Solid State Ionics 144, 249 (2001).

    Article  CAS  Google Scholar 

  14. R.P. O’Hayre, S-W. Cha, W.G. Colella, and F.B. Prinz: Fuel Cell Fundamentals, 2nd ed. (Wiley, New York, 2009).

    Google Scholar 

  15. J. Nielsen and J. Hjelm: Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM: YSZ cathodes. Electrochim. Acta 115, 31 (2014).

    Article  CAS  Google Scholar 

  16. C. Zhang, M.E. Grass, A.H. McDaniel, S.C. DeCaluwe, F.E. Gabaly, Z. Liu, K.F. McCarty, R.L. Farrow, M.A. Linne, Z. Hussain, G.S. Jackson, H. Bluhm, and B.W. Eichhorn: Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ x-ray photoelectron spectroscopy. Nat. Mater. 9, 944 (2010).

    Article  CAS  Google Scholar 

  17. S. Kaya, H. Ogasawarab, L-Å. Näslundb, J-O. Forsellc, H.S. Casalongue, D.J. Miller, and A. Nilsson: Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry. Catal. Today 205, 101 (2013).

    Article  CAS  Google Scholar 

  18. A. Kumar, D. Leonard, S. Jesse, F. Ciucci, E.A. Eliseev, A.N. Morozovska, M.D. Biegalski, H.M. Christen, A. Tselev, E. Mutoro, E.J. Crumlin, D. Morgan, Y. Shao-Horn, A. Borisevich, and S.V. Kalinin: Spatially resolved mapping of oxygen reduction/evolution reaction on solid-oxide fuel cell cathodes with sub-10 nm resolution. ACS Nano 7, 3808 (2013).

    Article  CAS  Google Scholar 

  19. A. Kumar, S. Jesse, A. Morozovska, E. Eliseev, A. Tebano, N. Yang, and S.V. Kalinin: Variable temperature electrochemical strain microscopy of Sm-doped ceria. Nanotechnology 24, 145401 (2013).

    Article  Google Scholar 

  20. J. Hou, S.S. Nonnenmann, W. Qin, and D.A. Bonnell: A transition in mechanisms of size dependent electrical transport at nanoscale metal-oxide interfaces. Appl. Phys. Lett. 103, 252106 (2013).

    Article  Google Scholar 

  21. B. Cappella and G. Dietler: Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1 (1999).

    Article  CAS  Google Scholar 

  22. J. Zhu, L. Lu, and K. Zeng: Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques. ACS Nano 7, 1666 (2013).

    Article  CAS  Google Scholar 

  23. R. Saive, M. Scherer, C. Mueller, D. Daume, J. Schinke, M. Kroeger, and W. Kowalsky: Imaging the electric potential within organic solar cells. Adv. Funct. Mater. 23, 5854 (2013).

    Article  CAS  Google Scholar 

  24. J. Broekmaat, A. Brinkman, D.H.A. Blank, and G. Rijnders: High temperature surface imaging using atomic force microscopy. Appl. Phys. Lett. 92, 043102 (2008).

    Article  Google Scholar 

  25. K.V. Hansen, Y. Wu, T. Jacobsen, M.B. Mogensen, and L.T. Kuhn: Improved controlled atmosphere high temperature scanning probe microscope. Rev. Sci. Instrum. 84, 073701 (2013).

    Article  CAS  Google Scholar 

  26. S.S. Nonnenmann and D.A. Bonnell: Miniature environmental chamber enabling in situ scanning probe microscopy within reactive environments. Rev. Sci. Instrum. 84, 073707 (2013).

    Article  Google Scholar 

  27. S.S. Nonnenmann, R. Kungas, J. Vohs, and D.A. Bonnell: Direct in situ probe of electrochemical processes in operating fuel cells. ACS Nano 7, 6330 (2013).

    Article  CAS  Google Scholar 

  28. T-H. Yeh, W-C. Hsu, and C-C. Chou: Mechanical and electrical properties of ZrO2 (3Y) doped with RENbO4 (RE = Yb, Er, Y, Dy, YNd, Sm, Nd). J. Phys. IV France 128, 213 (2005).

    Article  CAS  Google Scholar 

  29. M. Han, X. Tang, H. Yin, and S. Peng: Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J. Power Sources 165, 757 (2007).

    Article  CAS  Google Scholar 

  30. J.M. Vohs and R.J. Gorte: High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21, 943 (2009).

    Article  CAS  Google Scholar 

  31. R. Küngas, J.M. Vohs, and R.J. Gorte: Systematic studies of the cathode-electrolyte interface in SOFC cathodes prepared by infiltration. ECS Trans. 35, 2085 (2011).

    Article  Google Scholar 

  32. Y. Huang, J.M. Vohs, and R.J. Gorte: Fabrication of Sr-doped LaFeO3 YSZ composite cathodes. J. Electrochem. Soc. 151, A646 (2004).

    Article  CAS  Google Scholar 

  33. R. Küngas, J.M. Vohs, and R.J. Gorte: Effect of the ionic conductivity of the electrolyte in composite SOFC cathodes. J. Electrochem. Soc. 158, B743 (2011).

    Article  Google Scholar 

  34. R. Küngas, A.S. Yu, J. Levine, J.M. Vohs, and R.J. Gorte: An investigation of oxygen reduction kinetics in LSF electrodes. J. Electrochem. Soc. 160, F205 (2013).

    Article  Google Scholar 

  35. W.G. Bessler, S. Gewies, and M. Vogler: A new framework for physically based modeling of solid oxide fuel cells. Electrochim. Acta 53, 1782 (2006).

    Article  Google Scholar 

  36. S.R. Hui, J. Roller, S. Yick, X. Zhang, C. Decès-Petit, Y. Xie, R. Maric, and D. Ghosh: A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J. Electrochem. Soc. 172, 493 (2007).

    CAS  Google Scholar 

  37. R. Pornprasertsuk, P. Ramanarayanan, C.B. Musgrave, and F.B. Prinz: Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J. Appl. Phys. 98, 103513 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

C.R.P. and D.A.B. were partially supported from the Department of Energy Office of Basic Science DE-FG02-00ER45813-A000 to carry out this research. Facilities used at the Nano/Bio Interface Center were supported through the National Science Foundation NSEC DMR08-32802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen S. Nonnenmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Pérez, C.R., Oh, TS. et al. Probing local electrochemical activity within yttria-stabilized-zirconia via in situ high-temperature atomic force microscopy. Journal of Materials Research 30, 357–363 (2015). https://doi.org/10.1557/jmr.2014.295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.295

Navigation