Skip to main content
Log in

Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Pristine multiwalled carbon nanotubes (P-MWCNTs) were functionalized with carboxylic groups (MWCNT-COOH) through oxidation reactions and then reduced to produce hydroxyl groups (MWCNT-OH). Pristine and functionalized MWCNTs were used to produce poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposites with 0.5 wt% of MWCNTs. MWCNT functionalization was verified by visual stability in water, infrared and Raman spectroscopy, and zeta potential measurements. Pristine and functionalized MWCNTs acted as the nucleating agent in a PHBV matrix, as verified by differential scanning calorimetry (DSC). However, the dispersion of filler into the matrix, thermal stability, and direct current (DC) conductivity were affected by MWCNT functionalization. Scanning electron microscopy (SEM) showed that filler dispersion into the PHBV matrix was improved with MWCNT functionalization. The surface roughness was reduced with the addition and functionalization of MWCNT. The thermal stability of PHBV/MWCNT-COOH, PHBV/P-MWCNT, and PHBV/MWCNT-OH nanocomposites were 20, 30, and 30 °C higher than neat PHBV, respectively, as verified by thermogravimetry analysis (TGA). Addition of pristine and functionalized MWCNTs provided electrical conductivity in nanocomposite, which was higher for PHBV/P-MWCNTs (1.2 × 10−5 S cm−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. C. Xu and Z. Qiu: Nonisothermal melt crystallization and subsequent melting behavior of biodegradable poly (hydroxybutyrate)/multiwalled carbon nanotubes nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 47, 2238 (2009).

    Article  CAS  Google Scholar 

  2. M.M. Reddy, S. Vivekanandhan, M. Misra, S.K. Bhatia, and A.K. Mohanty: Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 38, 1653 (2013).

    Article  CAS  Google Scholar 

  3. C.S. Reddy, R. Ghai, and V. Kalia: Polyhydroxyalkanoates: An overview. Bioresour. Technol. 87, 137 (2003).

    Article  CAS  Google Scholar 

  4. L. Shang, Q. Fei, Y.H. Zhang, X.Z. Wang, D-D. Fan, and H.N. Chang: Thermal properties and biodegradability studies of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J. Polym. Environ. 20, 23 (2011).

    Article  Google Scholar 

  5. E. Zribi-Maaloul, I. Trabelsi, L. Elleuch, H. Chouayekh, and R.B. Salah: Purification and characterization of two polyhydroxyalcanoates from Bacillus cereus. Int. J. Biol. Macromol. 61, 82 (2013).

    Article  CAS  Google Scholar 

  6. J.C. Fradinho, J.M.B. Domingos, G. Carvalho, A. Oehmen, and M.A.M. Reis: Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresour. Technol. 132, 146 (2013).

    Article  CAS  Google Scholar 

  7. J. Eggers and A. Steinbüchel: Poly(3-hydroxybutyrate) degradation in Ralstonia eutropha H16 is mediated stereoselectively to (S)-3-hydroxybutyryl coenzyme A (CoA) via crotonyl-CoA. J. Bacteriol. 195, 3213 (2013).

    Article  CAS  Google Scholar 

  8. A.N. Boyandin, V.P. Rudnev, V.N. Ivonin, S.V. Prudnikova, K.I. Korobikhina, M.L. Filipenko, T.G. Volova, and A.J. Sinskey: Biodegradation of polyhydroxyalkanoate films in natural environments. Macromol. Symp. 320, 38 (2012).

    Article  CAS  Google Scholar 

  9. W.V. Srubar, S. Pilla, Z.C. Wright, C.A. Ryan, J.P. Greene, C.W. Frank, and S.L. Billington: Mechanisms and impact of fiber–matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered biobased composites. Compos. Sci. Technol. 72, 708 (2012).

    Article  CAS  Google Scholar 

  10. W.J. Liu, H.L. Yang, Z. Wang, L.S. Dong, and J.J. Liu: Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J. Appl. Polym. Sci. 86, 2145 (2002).

    Article  CAS  Google Scholar 

  11. M. Avella, G. Bogoeva-Gaceva, A. Buz, M.E. Errico, G. Gentile, and A. Grozdanov: Biocomposites reinforced with kenaf fibers. J. Appl. Polym. Sci. 104, 3192 (2007).

    Article  CAS  Google Scholar 

  12. A. El-Hadi, R. Schnabel, E. Straube, G. Müller, and S. Henning: Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym. Test. 21, 665 (2002).

    Article  CAS  Google Scholar 

  13. P.M. Ajayan: Nanotubes from carbon. Chem. Rev. 99, 1787 (1999).

    Article  CAS  Google Scholar 

  14. M.A. Atieh, O.Y. Bakather, B. Al-Tawbini, A.A. Bukhari, F.A. Abuilaiwi, and M.B. Fettouhi: Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water. Bioinorg. Chem. Appl. 2010, 1 (2010).

    Article  Google Scholar 

  15. N.G. Sahoo, S. Rana, J.W. Cho, L. Li, and S.H. Chan: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010).

    Article  CAS  Google Scholar 

  16. M. Moniruzzaman and K.I. Winey: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194 (2006).

    Article  CAS  Google Scholar 

  17. H. Hu, A. Yu, E. Kim, B. Zhao, M.E. Itkis, E. Bekyarova, and R.C. Haddon: Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes. J. Phys. Chem. B 109, 11520 (2005).

    Article  CAS  Google Scholar 

  18. S. Vidhate, L. Innocentini-Mei, and N.A.D. Souza: Mechanical and electrical multifunctional poly (3-hydroxybutyrate- co -3-hydroxyvalerate)— multiwall carbon nanotube nanocomposites. Polym. Eng. Sci. 52, 1367 (2012).

    Article  CAS  Google Scholar 

  19. C-X. Liu and J-W. Choi: Improved dispersion of carbon nanotubes in polymers at high concentrations. Nanomaterials 2, 329 (2012).

    Article  CAS  Google Scholar 

  20. P.C. Ma, J-K. Kim, and B.Z. Tang: Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44, 3232 (2006).

    Article  CAS  Google Scholar 

  21. S. Chen, W. Shen, G. Wu, D. Chen, and M. Jiang: A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups. Chem. Phys. Lett. 402, 312 (2005).

    Article  CAS  Google Scholar 

  22. L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, and J. Judek: Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J. Alloys Compd. 501, 77 (2010).

    Article  CAS  Google Scholar 

  23. B. Scheibe, E. Borowiak-Palen, and R.J. Kalenczuk: Oxidation and reduction of multiwalled carbon nanotubes — preparation and characterization. Mater. Charact. 61, 185 (2010).

    Article  CAS  Google Scholar 

  24. L. Liu, Y. Qin, Z. Guo, and D. Zhu: Reduction of solubilized multi-walled carbon nanotubes. Carbon 41, 331 (2003).

    Article  CAS  Google Scholar 

  25. C. Damian, M. Andreea, and H. Iovu: Ethylenediamine functionalization effect on the thermo-mechanical properties of epoxy nanocomposites reinforced with multiwall carbon nanotubes. U.P.B. Sci. Bull. 72, 163 (2010).

    CAS  Google Scholar 

  26. E.F. Antunes, A.O. Lobo, E.J. Corat, V.J. Trava-Airoldi, A.A. Martin, and C. Veríssimo: Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon 44, 2202 (2006).

    Article  CAS  Google Scholar 

  27. S. Osswald, M. Havel, and Y. Gogotsi: Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38, 728 (2007).

    Article  CAS  Google Scholar 

  28. M.T. Byrne, W.P. McNamee, and Y.K. Gun’ko: Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites. Nanotechnology 19, 1 (2008).

    Google Scholar 

  29. L.M.W.K. Gunaratne, R.A. Shanks, and G. Amarasinghe: Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate). Thermochim. Acta 423, 127 (2004).

    Article  CAS  Google Scholar 

  30. A.J. Owen, J. Heinzel, Ž. Škrbić, and V. Divjaković: Crystallization and melting behaviour of PHB and PHB/HV copolymer. Polymer 33, 1563 (1992).

    Article  CAS  Google Scholar 

  31. M. Lai, J. Li, J. Yang, J. Liu, X. Tong, and H. Cheng: The morphology and thermal properties of multi-walled carbon nanotube and poly(hydroxybutyrate-co-hydroxyvalerate) composite. Polym. Int. 53, 1479 (2004).

    Article  CAS  Google Scholar 

  32. H-Y. Yu, J-M. Yao, Z-Y. Qin, L. Liu, and X-G. Yang: Comparison of covalent and noncovalent interactions of carbon nanotubes on the crystallization behavior and thermal properties of poly(3-hydroxybutyrate- co -3-hydroxyvalerate). J. Appl. Polym. Sci. 130, 4299 (2013).

    CAS  Google Scholar 

  33. M.S.P. Shaffer and A.H. Windle: Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater. 11, 937 (1999).

    Article  CAS  Google Scholar 

  34. Q. Li: Temperature dependence of the electrical properties of the carbon nanotube/polymer composites. eXPRESS Polym. Lett. 3, 769 (2009).

    Article  CAS  Google Scholar 

  35. J.O. Aguilar, J.R. Bautista-Quijano, and F. Avilés: Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. eXPRESS Polym. Lett. 4, 292 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thaís Larissa do Amaral Montanheiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Amaral Montanheiro, T.L., Cristóvan, F.H., Machado, J.P.B. et al. Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. Journal of Materials Research 30, 55–65 (2015). https://doi.org/10.1557/jmr.2014.303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.303

Navigation