Skip to main content
Log in

In situ observation of the spatial distribution of crystalline phases during pressure-induced transformations of indented silicon thin films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Indentation-induced phase transformation processes were studied by in situ Raman imaging of the deformed contact region of silicon thin films, using a Raman spectroscopy-enhanced instrumented indentation technique (IIT). In situ Raman imaging was used to study the generation and evolution of the phase transformation of silicon while performing an IIT experiment analyzed to determine the average contact pressure and indentation strain. This is, to our knowledge, the first sequence of Raman images documenting the evolution of the strain fields and changes in the phase distributions of a material while conducting an indentation experiment. The reported in situ experiments provide insights into the transformation processes in silicon during indentation, confirming, and providing the experimental evidence for, some of the previous assumptions made on this subject. The developed Raman spectroscopy-enhanced IIT has shown its potential in advancing the understanding of deformation mechanisms and will provide a very useful tool in validating and refining contact models and related simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A. Mujica, A. Rubio, A. Munoz, and R.J. Needs: High-pressure phases of group-IV, III-V, and II-VI compounds. Rev. Mod. Phys. 75, 863 (2003).

    Article  CAS  Google Scholar 

  2. M.C. Gupta and A.L. Ruoff: Static compression of silicon in the [100] and in the [111] directions. J. Appl. Phys. 51, 1072 (1980).

    Article  CAS  Google Scholar 

  3. J.C. Jamieson: Crystal structures at high pressures of metallic modifications of silicon and germanium. Science 139, 762 (1963).

    Article  CAS  Google Scholar 

  4. J.Z. Hu, L.D. Merkle, C.S. Menoni, and I.L. Spain: Crystal data for high-pressure phases of silicon. Phys. Rev. B 34, 4679 (1986).

    Article  CAS  Google Scholar 

  5. J. Crain, G.J. Ackland, J.R. Mclean, R.O. Piltz, P.D. Hatton, and G.S. Pawley: Reversible pressure-induced structural transitions between metastable phases of silicon. Phys. Rev. B 50, 13043 (1994).

    Article  CAS  Google Scholar 

  6. D.R. Clarke, M.C. Kroll, P.D. Kirchner, R.F. Cook, and B.J. Hockey: Amorphization and conductivity of silicon and germanium induced by indentation. Phys. Rev. Lett. 60, 2156 (1988).

    Article  CAS  Google Scholar 

  7. G.M. Pharr, W.C. Oliver, and D.S. Harding: New evidence for a pressure-induced phase transformation during the indentation of silicon. J. Electron. Mater. 19, 881 (1990).

    Article  CAS  Google Scholar 

  8. I.V. Gridneva, Y.V. Milman, and V.I. Trefilov: Phase transition in diamond-structure crystals during hardness measurements. Phys. Status Solidi 14, 177 (1972).

    Article  CAS  Google Scholar 

  9. G.M. Pharr, W.C. Oliver, R.F. Cook, P.D. Kirchner, M.C. Kroll, T.R. Dinger, and D.R. Clarke: Electrical resistance of metallic contacts on silicon and germanium during indentation. J. Mater. Res. 7, 961 (1992).

    Article  CAS  Google Scholar 

  10. E.R. Weppelmann, J.S. Field, and M.V. Swain: Observation, analysis, and simulation of the hysteresis of silicon using ultra-micro-indentation with spherical indenters. J. Mater. Res. 8, 830 (1993).

    Article  CAS  Google Scholar 

  11. J.E. Bradby, J.S. Willaims, J. Wong-Leung, M.V. Swain, and P. Munroe: Mechanical deformation in silicon by micro-indentation. J. Matter. Res. 16(5), 1500 (2001).

    Article  CAS  Google Scholar 

  12. T. Juliano, V. Domnich, and Y. Gogotsi: Examining pressure-induced phase transformations in silicon by spherical indentation and Raman spectroscopy: A statistical study. J. Mater. Res. 19, 3099 (2004).

    Article  CAS  Google Scholar 

  13. H. Saka, A. Shimantani, M. Suganuma, and Suprijadi: Transmission electron microscopy of amorphization and phase transformation beneath indents in Si. Philos. Mag. A 82, 1971 (2002).

    Article  CAS  Google Scholar 

  14. D. Ge, A.M. Minor, E.A. Stach, and J.W. Morris, Jr.: Size effects in the nanoindentation of silicon at ambient temperature. Philos. Mag. 86, 4069 (2006).

    Article  CAS  Google Scholar 

  15. V. Domnich and Y. Gogotsi: Phase transformations in silicon under contact loading. Rev. Adv. Mater. Sci. 3, 1 (2002).

    Article  CAS  Google Scholar 

  16. K. Mylvaganam, L.C. Zhang, P. Eyben, J. Mody, and W. Vandervorst: Evolution of metastable phases in silicon during nanoindentation: Mechanism analysis and experimental verification. Nanotechnology 20, 305705 (2009).

    Article  CAS  Google Scholar 

  17. S-T. Ho, Y-H. Chang, and H-N. Lin: Conducting atomic force microscopy of phase transformation in silicon nanoindentation. J. Appl. Phys. 96, 3562 (2004).

    Article  CAS  Google Scholar 

  18. A. Kailer, Y.G. Gogotsi, and K.G. Nickel: Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057 (1997).

    Article  CAS  Google Scholar 

  19. J. Jang, M.J. Lance, D. Wen, T.Y. Tsui, and G.M. Pharr: Indentation-induced phase transformations in silicon: Influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 53, 1759 (2005).

    Article  CAS  Google Scholar 

  20. D. Ge, V. Domnich, and Y. Gogotsi: High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation. J. Appl. Phys. 93, 2418 (2003).

    Article  CAS  Google Scholar 

  21. I. Zarudi, L.C. Zhang, J. Zou, and T. Vodenitcharova: The R8-BC8 phases and crystal growth in monocrystalline silicon under microindentation with a spherical indenter. J. Mater. Res. 19, 332 (2004).

    Article  CAS  Google Scholar 

  22. A. Haq and P.R. Munroe: Phase transformations in (111) Si after spherical indentation. J. Mater. Res. 24, 1967 (2009).

    Article  CAS  Google Scholar 

  23. Y.B. Gerbig, S.J. Stranick, and R.F. Cook: Direct observation of phase transformation anisotropy in indented silicon studied by confocal Raman spectroscopy. Phys. Rev. B 83, 205209 (2001).

    Article  CAS  Google Scholar 

  24. C.R. Das, H.C. Hsu, S. Dhara, A.K. Bhaduri, B. Raj, L.C. Chen, K.H. Chen, S.K. Albert, A. Ray, and Y. Tzeng: A complete Raman mapping of phase transitions in Si under indentation. J. Raman Spectrosc. 41, 334 (2010).

    Article  CAS  Google Scholar 

  25. F. Demangeot, P. Puech, V. Paillard, V. Domnich, and Y.G. Gogotsi: Spatial distribution of strain and phases in Si nano-indentation analysed by Raman mapping. Solid State Phenom. 82–84, 777 (2002).

    Google Scholar 

  26. P. Puech, F. Demangeot, P.S. Pizani, V. Domnich, and Y. Gogotsi: Is there a link between very high strain and metastable phases in semiconductors: Cases of Si and GaAs?J. Phys.: Condens. Matter 16, S39 (2004).

    CAS  Google Scholar 

  27. P. Eyben, F. Clemente, K. Vanstreels, G. Purtois, T. Clarysse, K. Sankaran, J. Mody, W. Vandervorst, K. Mylvaganam, and L. Zhang: Analysis and modeling of the high vacuum scanning spreading resistance microscopy nanocontact on silicon. J. Vac. Sci. Technol., B 28, 401 (2010).

    Article  CAS  Google Scholar 

  28. J.E. Bradby, J.S. Williams, and M.V. Swain: In situ electrical characterization of phase transformations in Si during indentation. Phys. Rev. B 67, 085205 (2003).

    Article  CAS  Google Scholar 

  29. A.B. Mann, D. Van Heerden, J.B. Pethica, P. Bowes, and T.P. Weihs: Contact resistance and phase transformations during nanoindentation of silicon. Philos. Mag. A 82, 1921 (2002).

    Article  CAS  Google Scholar 

  30. B.D. Malone, J.D. Sau, and M.L. Cohen: Ab initio survey of the electronic structure of tetrahedrally bonded phases of silicon. Phys. Rev. B 78, 035210 (2008).

    Article  CAS  Google Scholar 

  31. S. Ruffell, J.E. Bradby, J.S. Williams, and P. Munroe: Formation and growth of nanoindentation-induced high pressure phases in crystalline and amorphous silicon. J. Appl. Phys. 102, 063521 (2007).

    Article  CAS  Google Scholar 

  32. Y.B. Gerbig, C.A. Michaels, A.M. Forster, J.W. Hettenhouser, W.E. Byrd, D.J. Morris, and R.F. Cook: Indentation device for in situ Raman spectroscopic and optical studies. Rev. Sci. Instrum. 83, 125106 (2012).

    Article  CAS  Google Scholar 

  33. Y.B. Gerbig, C.A. Michaels, A.M. Forster, and R.F. Cook: In situ observation of the indentation-induced phase transformation of silicon thin films. Phys. Rev. B 85, 104102 (2012).

    Article  CAS  Google Scholar 

  34. Any mention of commercial products within this paper is for information only; it does not imply recommendation or endorsement by NIST.

  35. A.J. Bushby and N.M. Jennet: Determining the area function of spherical indenters for nanoindentation. In Fundamentals of Nanoindentation & Nanotribology II, S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody ed.; Mat. Res. Soc. Symp. Proc., Vol. 649, Warrendale, PA, 2001, p. Q7.17.1.

  36. J.S. Field and M.V. Swain: Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  37. Y.B. Gerbig, S.J. Stranick, D.J. Morris, M.D. Vaudin, and R.F. Cook: Effect of crystallographic orientation on phase transformations during indentation of silicon. J. Mater. Res. 24, 1172 (2009).

    Article  CAS  Google Scholar 

  38. B.A. Weinstein and G.J. Piermarini: Raman scattering and phonon dispersion in Si and GaP at very high pressure. Phys. Rev. B 12, 1172 (1972).

    Article  Google Scholar 

  39. W. Windl, P. Pavone, K. Karch, O. Schütt, D. Strauch, P. Giannozzi, and S. Baroni: Second-order Raman spectra of diamond from ab initio phonon calculations. Phys. Rev. B 48, 3164 (1993).

    Article  CAS  Google Scholar 

  40. M. Kadleíková, J. Breza, and M. Veselý: Raman spectra of synthetic sapphire. Microelectron. J. 32, 955 (2001).

    Article  Google Scholar 

  41. E. Anastassakis, A. Pinczuk, and E. Burstein: Effect of static uniaxial stress on the Raman spectrum of silicon. Solid State Commun. 8, 133 (1970).

    Article  CAS  Google Scholar 

  42. T.P. Mernagh and L-G. Liu: Pressure dependence of Raman phonons of some group IVA (C, Si, and Ge) elements. J. Phys. Chem. Solids 52, 507 (1991).

    Article  CAS  Google Scholar 

  43. S. Khachadorian, K. Papagelis, H. Scheel, A. Coli, A.C. Ferrari, and C. Thomsen: High pressure Raman scattering of silicon nanowires. Nanotechnology 22, 195707 (2011).

    Article  CAS  Google Scholar 

  44. A. Debernardi, S. Baroni, and E. Molinari: Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75, 1819 (1995).

    Article  CAS  Google Scholar 

  45. H. Olijnyk: Raman scattering in metallic Si and Ge up to 50 GPa. Phys. Rev. Lett. 68, 2232 (1992).

    Article  CAS  Google Scholar 

  46. K. Gaál-Nagy, M. Schmitt, P. Pavone, and D. Strauch: Ab initio study of the high-pressure phase transition from the cubic-diamond to the β-tin structure of Si. Comput. Mater. Sci. 22, 49 (2001).

    Article  Google Scholar 

  47. D.E. Kim and S.I. Oh: Deformation pathway to high-pressure phases of silicon during nanoindentation. J. Appl. Phys. 104, 013502 (2008).

    Article  CAS  Google Scholar 

  48. S.M-M. Dubois, G-M. Rignanese, T. Pardoen, and J-C. Charlier: Ideal strength of silicon: An ab initio study. Phys. Rev. B 74, 235203 (2006).

    Article  CAS  Google Scholar 

  49. J. Gilman: Shear-induced metallization. Philos. Mag. B 67, 207 (1993).

    Article  CAS  Google Scholar 

  50. M. Durandurdu: Diamond to β-tin phase transition of silicon under hydrostatic and nonhydrostatic compressions. J. Phys.: Condens. Matter 20, 325232 (2008).

    Google Scholar 

  51. C-F. Han and J-F. Lin: The model developed for stress-induced structural phase transformations in micro-crystalline silicon films. Nano-Micro Lett. 2, 68 (2010).

    Article  CAS  Google Scholar 

  52. Y-H. Lin, S-R. Jian, Y-S. Lai, and P-F. Yang: Molecular dynamics simulations of nanoindentation-induced mechanical deformation and phase transformation in monocrystalline silicon. Nanoscale Res. Lett. 3, 71 (2008).

    Article  CAS  Google Scholar 

  53. C.F. Sanz-Navarro, S.D. Kenny, and R. Smith: Atomistic simulations of structural transformations of silicon surfaces under nanoindentation. Nanotechnology 15, 692 (2004).

    Article  CAS  Google Scholar 

  54. G.S. Smith, E.B. Tadmor, N. Bernstein, and E. Kaxiras: Multiscale simulations of silicon nanoindentation. Acta Mater. 49, 4089 (2001).

    Article  CAS  Google Scholar 

  55. L.L. Boyer, E. Kaxiras, J.L. Feldman, J.Q. Broughton, and M.J. Mehl: New low-energy crystal structure for silicon. Phys. Rev. Lett. 67, 715 (1991).

    Article  CAS  Google Scholar 

  56. L. Qin, K.L. Teo, Z.X. Shen, C.S. Peng, and J.M. Zhou: Raman scattering of Ge/Si dot superlattices under hydrostatic pressure. Phys. Rev. B 64, 075312 (2001).

    Article  CAS  Google Scholar 

  57. W.C.D. Cheong and L.C. Zhang: Stress criterion for the β-tin transformation in silicon under indentation and uniaxial compression. Key Eng. Mater. 233–236, 603 (2003).

    Article  Google Scholar 

  58. R.O. Piltz, J.R. Maclean, S.J. Clark, G.J. Ackland, P.D. Hatton, and J. Crain: Structure and properties of silicon XII: A complex tetrahedrally bonded phase. Phys. Rev. B 52, 4072 (1995).

    Article  CAS  Google Scholar 

  59. K. Winer: Structural and vibrational properties of a realistic model of amorphous silicon. Phys. Rev. B 35, 2366 (1987).

    Article  CAS  Google Scholar 

  60. J. Khajehpour, W.A. Daoud, T. Williams, and L. Bourgeois: Laser-induced reversible and irreversible changes in silicon nanostructures: One- and multi-phonon Raman scattering study. J. Phys. Chem. C 115, 22131 (2011).

    Article  CAS  Google Scholar 

  61. V. Lavrentiev, J. Vacik, V. Vorlicek, and V. Vosecek: Raman scattering in silicon disordered by gold ion implantation. Phys. Status Solidi B 247, 2022 (2010).

    Article  CAS  Google Scholar 

  62. H. Olijnyk and A. Jephcoat: Effect of pressure on Raman spectra of metastable phases of Si and Ge. Phys. Status Solidi B 211, 413 (1999).

    Article  CAS  Google Scholar 

  63. T. Ishidate, K. Inoue, K. Tsuji, and S. Minomura: Raman scattering in hydrogenated amorphous silicon under high pressure. Solid State Commun. 42, 197 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne B. Gerbig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerbig, Y.B., Michaels, C.A. & Cook, R.F. In situ observation of the spatial distribution of crystalline phases during pressure-induced transformations of indented silicon thin films. Journal of Materials Research 30, 390–406 (2015). https://doi.org/10.1557/jmr.2014.316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.316

Navigation