Skip to main content
Log in

Fatigue of self-healing hierarchical soft nanomaterials: The case study of the tendon in sportsmen

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

One of the defining properties of biological structural materials is self-healing, i.e., the ability to undergo long-term reparation after instantaneous damaging events, but also after microdamage due to repeated load cycling. To correctly model the fatigue life of such materials, self-healing must be included in fracture and fatigue laws, and related codes. Here, we adopt a numerical modelization of fatigue cycling of self-healing biological materials based on the hierarchical fiber bundle model and propose modifications in Griffith’s and Paris’ laws to account for the presence of self-healing. Simulations allow us to numerically verify these modified expressions and highlight the effect of the self-healing rate, in particular, for collagen-based materials such as human tendons and ligaments. The study highlights the effectiveness of the self healing process even for small healing rates and provides the possibility of improving the reliability of predictions of fatigue life in biomechanics, e.g., in sports medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. M.A. Meyers, P-Y. Chen, A.Y-M. Lin, and Y. Seki: Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53(1), 1 (2008).

    Article  CAS  Google Scholar 

  2. B.A. Winkelstein: Orthopaedic Biomechanics (CRC Press, Boca Raton, FL, 2013).

    Google Scholar 

  3. M.A. Meyers, J. McKittrick, and P-Y. Chen: Structural biological materials: Critical mechanics-materials connections. Science 339(6121), 773 (2013).

    Article  CAS  Google Scholar 

  4. S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, and S. Viswanathan: Autonomic healing of polymer composites. Nature 409(6822), 794 (2001).

    Article  CAS  Google Scholar 

  5. V. Sahni, J. Harris, T.A. Blackledge, and A. Dhinojwala: Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture. Nat. Commun. 3, 1106 (2012).

    Article  Google Scholar 

  6. K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, and S.R. White: Self-healing materials with microvascular networks. Nat. Mater. 6(8), 581 (2007).

    Article  CAS  Google Scholar 

  7. C.J. Hansen, W. Wu, K.S. Toohey, N.R. Sottos, S.R. White, and J.A. Lewis: Self-healing materials with interpenetrating microvascular networks. Adv. Mater. 21(41), 4143 (2009).

    Article  CAS  Google Scholar 

  8. E.N. Brown, S.R. White, and N.R. Sottos: Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part II: In situ self-healing. Compos. Sci. Technol. 65(15–16), 2474 (2005).

    Article  CAS  Google Scholar 

  9. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, and L. Leibler: Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181), 977 (2008).

    Article  CAS  Google Scholar 

  10. E.N. Brown, S.R. White, and N.R. Sottos: Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part I: Manual infiltration. Compos. Sci. Technolo. 65(15–16), 2466 (2005).

    Article  CAS  Google Scholar 

  11. A.S. Jones, J.D. Rule, J.S. Moore, N.R. Sottos, and S.R. White: Life extension of self-healing polymers with rapidly growing fatigue cracks. J. R. Soc., Interface 4(13), 395 (2007).

    Article  CAS  Google Scholar 

  12. E.B. Murphy and F. Wudl: The world of smart healable materials. Prog. Polym. Sci. 35(1–2), 223 (2010).

    Article  CAS  Google Scholar 

  13. A.C. BaLazs: Modelling self-healing materials. Mater. Today 10(9), 18 (2007).

    Article  CAS  Google Scholar 

  14. A. Gautieri, S. Vesentini, A. Redaelli, and M.J. Buehler: Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11(2), 757 (2011).

    Article  CAS  Google Scholar 

  15. S. Pradhan, A. Hansen, and B.K. Chakrabarti: Failure processes in elastic fiber bundles. Rev. Mod. Phys. 82(1), 499 (2010).

    Article  Google Scholar 

  16. N.M. Pugno, F. Bosia, and A. Carpinteri: Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic cables. Small 4(8), 1044 (2008).

    Article  CAS  Google Scholar 

  17. F. Bosia, T. Abdalrahman, and N.M. Pugno: Investigating the role of hierarchy on the strength of composite materials: Evidence of a crucial synergy between hierarchy and material mixing. Nanoscale 4(4), 1200 (2012).

    Article  CAS  Google Scholar 

  18. F. Bosia, T. Abdalrahman, and N.M. Pugno: Self-healing of hierarchical materials. Langmuir 30(4), 1123 (2014).

    Article  CAS  Google Scholar 

  19. H. Schechtman and D.L. Bader: In vitro fatigue of human tendons. J. Biomech. 30(8), 829 (1997).

    Article  CAS  Google Scholar 

  20. H. Schechtman and D.L. Bader: Fatigue damage of human tendons. J. Biomech. 35(3), 347 (2002).

    Article  CAS  Google Scholar 

  21. T.A.L. Wren, S.A. Yerby, G.S. Beaupré, and D.R. Carter: Mechanical properties of the human achilles tendon. Clin. Biomech. 16(3), 245 (2001).

    Article  CAS  Google Scholar 

  22. T.L. Anderson: Fracture Mechanics: Fundamentals and Applications, 3rd ed. (Taylor & Francis, Boca Raton, FL, 2005).

    Book  Google Scholar 

  23. N. Pugno, A. Carpinteri, M. Ippolito, A. Mattoni, and L. Colombo: Atomistic fracture: QFM vs. MD. Eng. Fract. Mech. 75(7), 1794 (2008).

    Article  Google Scholar 

  24. M.G.P.C. Paris and W.E. Anderson: A rational analytic theory of fatigue. Trend Eng. 13, 9 (1961).

    Google Scholar 

  25. N. Pugno, P. Cornetti, and A. Carpinteri: New unified laws in fatigue: From the Wohler’s to the Paris’ regime. Eng. Fract. Mech. 74(4), 595 (2007).

    Article  Google Scholar 

  26. N. Pugno, M. Ciavarella, P. Cornetti, and A. Carpinteri: A generalized Paris’ law for fatigue crack growth. J. Mech. Phys. Solids 54, 1333–1349 (2006).

    Article  CAS  Google Scholar 

  27. R. Lakes: Materials with structural hierarchy. Nature 361(6412), 511 (1993).

    Article  Google Scholar 

  28. P. Fratzl and R. Weinkamer: Nature’s hierarchical materials. Prog. Mater. Sci. 52(8), 1263 (2007).

    Article  CAS  Google Scholar 

  29. W. Weibull: A Statistical Theory of the Strength of Materials, Ingeniörsvetenskapsakademiens Handlingar Nr 151, 1939 (Generalstabens Litografiska Anstalts Förlag, Stockholm).

    Google Scholar 

  30. http://www.dauin-hpc.polito.it.

  31. R.K. Nalla, J.J. Kruzic, J.H. Kinney, and R.O. Ritchie: Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth. Biomaterials 26, 2183–2195 (2005).

    Article  CAS  Google Scholar 

  32. K.J. Mach, B.B. Hale, M.W. Denny, and D.V. Nelson: Death by small forces: a fracture and fatigue analysis of wave-swept macroalgae. J. of Exp. Biology 210, 2231–2243.

  33. P. Fratzl: Collagen: Structure and Mechanics (Springer, 2008).

Download references

ACKNOWLEDGEMENTS

NMP acknowledges support from the European Research Council, ERC Ideas Starting Grant No. 279985 “BIHSNAM”, from ERC Proof of Concept Grant No. 619448 “REPLICA2” and No. 632277 “KNOTOUGH”, from the Graphene FET Flagship (“Graphene-Based Revolutions in ICT And Beyond”-Grant agreement No. 604391), and from the Autonomous Province of Trento (Graphene PAT WP10, code 81017). FB acknowledges support from BIHSNAM. The authors also acknowledge support for computational resources from Politecnico di Torino’s DAUIN High Performance Computing Initiative (www.dauin-hpc.polito.it).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola M. Pugno.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosia, F., Merlino, M. & Pugno, N.M. Fatigue of self-healing hierarchical soft nanomaterials: The case study of the tendon in sportsmen. Journal of Materials Research 30, 2–9 (2015). https://doi.org/10.1557/jmr.2014.335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.335

Navigation