Skip to main content
Log in

Effect of crystal orientation on microstructure and properties of bulk Fe2B intermetallic

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of Fe2B-grain orientation on microstructure and properties of bulk Fe2B intermetallic fabricated by directional and ordinary solidification techniques have been investigated. The results show that unidirectional solidified Fe2B intermetallic possesses a strong (002) texture in the transverse direction owing to the opposite unidirectional heat-squeeze effect while random Fe2B grains can be produced under ordinary solidification conditions. The nonoriented Fe2B intermetallic has the highest linear expansion coefficient of 13.04 × 10−6 °C−1 while the microhardness and fracture toughness of transverse Fe2B intermetallic in the (002) plane are larger than those of Fe2B with other grain orientations and their values are ∼18.72 GPa and 6.42 MPa·m1/2, respectively. Liquid zinc corrosion results indicate that unidirectional Fe2B intermetallic with long axis perpendicular to the direction of liquid zinc corrosion displays the best corrosion resistance to liquid zinc owing to its beneficial barrier effect. The FeB transition phase can naturally form and grow parabolically during liquid zinc corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. V.I. Dybkov, W. Lengauer, and K. Barmak: Formation of boride layers at the Fe-10%Cr alloy-boron interface. J. Alloys Compd. 398, 113 (2005).

    Article  CAS  Google Scholar 

  2. Z. Hu, Y. Fan, Y. Wu, Q. Yan, and Y. Chen: Crystallization and structure of high boron content iron-boron ultrafine amorphous alloy particles. J. Mater. Sci. 31, 611 (1996).

    Article  CAS  Google Scholar 

  3. O. Ozdemir, M. Usta, C. Bindal, and A. Ucisik: Hard iron boride (Fe2B) on 99.97wt% pure iron. Vacuum 80, 1391 (2006).

    Article  CAS  Google Scholar 

  4. U. Sen, S. Sen, S. Koksal, and F. Yilmaz: Fracture toughness of borides formed on boronized ductile iron. Mater. Des. 26, 175 (2005).

    Article  CAS  Google Scholar 

  5. S. Taktak: Some mechanical properties of borided AISI H13 and 304 steels. Mater. Des. 28, 1836 (2007).

    Article  CAS  Google Scholar 

  6. Y. Kayali, S. Taktak, S. Ulu, and Y. Yalcin: Investigation of mechanical properties of boro-tempered ductile iron. Mater. Des. 31, 1799 (2010).

    Article  CAS  Google Scholar 

  7. D.N. Tsipas, G.K. Triantafyllidis, K.J. Kiplagat, and P. Psillaki: Degradation behaviour of boronized carbon and high alloy steels in molten aluminium and zinc. Mater. Lett. 37, 128 (1998).

    Article  CAS  Google Scholar 

  8. S.Q. Ma, J.D. Xing, H.G. Fu, D.W. Yi, X.H. Zhi, and Y.F. Li: Effects of boron concentration on the corrosion resistance of Fe-B alloys immersed in 460 °C molten zinc bath. Surf. Coat. Technol. 204, 2208 (2010).

    Article  CAS  Google Scholar 

  9. S.Q. Ma, J.D. Xing, D.W. Yi, H.G. Fu, J.J. Zhang, Y.F. Li, Z.Y. Zhang, G.F. Liu, and B.J. Zhu: Interfacial morphology and corrosion resistance of Fe-B cast steel containing chromium and nickel in liquid zinc. Corros. Sci. 53, 2826 (2011).

    Article  CAS  Google Scholar 

  10. S.Q. Ma, J.D. Xing, D.W. Yi, H.G. Fu, J.J. Zhang, Y.F. Li, Z.Y. Zhang, G.F. Liu, and B.J. Zhu: Microstructure and corrosion behavior of cast Fe-B alloys dipped into liquid zinc bath. Mater. Charact. 61, 866 (2010).

    Article  CAS  Google Scholar 

  11. D.N. Tsipas and J. Rus: Boronizing of alloy steels. J. Mater. Sci. Lett. 6, 118 (1987).

    Article  CAS  Google Scholar 

  12. D.W. Yi, J.D. Xing, S.Q. Ma, H.G. Fu, Y.F. Li, W. Chen, J.B. Yan, J.J. Zhang, and R.R. Zhang: Investigations on microstructures and two-body abrasive wear behavior of Fe-B cast alloy. Tribol. Lett. 45, 427 (2012).

    Article  CAS  Google Scholar 

  13. Z.F. Huang, J.D. Xing, and C. Guo: Improving fracture toughness and hardness of Fe2B in high boron white cast iron by chromium addition. Mater. Des. 31, 3084 (2010).

    Article  CAS  Google Scholar 

  14. J.J. Coronado: Effect of (Fe,Cr)7C3 carbide orientation on abrasion wear resistance and fracture toughness. Wear 270, 287 (2011).

    Article  CAS  Google Scholar 

  15. Ö.N. Doğan and J.A. Hawk: Effect of carbide orientation on abrasion of high Cr white cast iron. Wear 189, 136 (1995).

    Article  Google Scholar 

  16. S.R. Wang, L.H. Song, Y. Qiao, and M. Wang: Effect of carbide orientation on impact-abrasive wear resistance of high-Cr iron used in shot blast machine. Tribol. Lett. 50, 439 (2013).

    Article  CAS  Google Scholar 

  17. L. Sun, Y.M. Gao, B. Xiao, Y.F. Li, and G.L. Wang: Anisotropic elastic and thermal properties of titanium borides by first-principles calculations. J. Alloys Compd. 579, 457 (2013).

    Article  CAS  Google Scholar 

  18. F.C. Yin, X.L. Ruan, M.X. Zhao, Y.X. Liu, and Z. Li: The 600 °C and 450 °C isothermal sections of the Zn-Fe-B system. J. Alloys Compd. 565, 79 (2013).

    Article  CAS  Google Scholar 

  19. Z.F. Huang, S.Q. Ma, J.D. Xing, and B.Y. Wang: Bulk Fe2B crystal fabricated by mechanical ball milling and plasma activated sintering. J. Alloys Compd. 582, 196 (2014).

    Article  CAS  Google Scholar 

  20. W.C. Liu, L.K. Jiang, L. Cao, J. Mei, G.H. Wu, S. Zhang, L. Xiao, S.H. Wang, and W.J. Ding: Fatigue behavior and plane-strain fracture toughness of sand-cast Mg-10Gd-3Y-0.5Zr magnesium alloy. Mater. Des. 59, 466 (2014).

    Article  CAS  Google Scholar 

  21. W.J. Wang, J.P. Lin, Y.L. Wang, and G.L. Chen: The corrosion of Fe3Al alloy in liquid zinc. Corros. Sci. 1340 (2007).

  22. S.Q. Ma, J.D. Xing, H.G. Fu, Y.L. He, Y. Bai, Y.F. Li, and Y.P. Bai: Interface characteristics and corrosion behaviour of oriented bulk Fe2B alloy in liquid zinc. Corros. Sci. 78, 71 (2014).

    Article  CAS  Google Scholar 

  23. V. Raghavan: B-Fe-Si (boron-iron-silicon). J. Phase Equilib. Diffus. 28, 380 (2007).

    Article  CAS  Google Scholar 

  24. B. Aronsson and I. Engström: X-ray investigations on Me-Si-B systems (Me=Mn, Fe, Co). II. Some features of the Fe-Si-B and Mn-Si-B systems. Acta Chem. Scand. 14, 1403 (1960).

    Article  CAS  Google Scholar 

  25. Y. Li and R.P.H. Chang: Synthesis and characterization of iron silicon boron (Fe5Si2B) and iron boride (Fe3B) nanowires. J. Am. Chem. Soc. 128, 12778 (2006).

    Article  CAS  Google Scholar 

  26. M.S. Li, S.L. Fu, W.D. Xu, R.L. Zhang, and R.H. Yu: Valence electron structure of Fe2B phase and its eigen-brittleness. Acta Metall. Sin. 31, 201 (1995).

    Google Scholar 

  27. B. Xiao, J.D. Xing, S.F. Ding, and W. Su: Stability, electronic and mechanical properties of Fe2B. Phys. B 403, 1723 (2008).

    Article  CAS  Google Scholar 

  28. A. Van de Walle and G. Ceder: The effect of lattice vibrations on substitutional alloy thermodynamics. Rev. Mod. Phys. 74, 11 (2002).

    Article  Google Scholar 

  29. A.A. Quong and A.Y. Liu: First-principles calculations of the thermal expansion of metals. Phys. Rev. B 56, 7767 (1997).

    Article  CAS  Google Scholar 

  30. E. Hernández-Sanchez, G. Rodriguez, A. Meneses-Amador, D. Bravo-Bárcenas, I. Arzate-Vazquez, H. Martínez-Gutiérrez, M. Romero-Romo, and I. Campos-Silva: Effect of the anisotropic growth on the fracture toughness measurements obtained in the Fe2B layer. Surf. Coat. Technol. 237, 292 (2013).

    Article  Google Scholar 

  31. C.Q. Guo: Modeling of spatial distribution of the eutectic M2B borides in Fe-Cr-B cast irons. J. Mater. Sci. 39, 1109 (2004).

    Article  CAS  Google Scholar 

  32. S.Q. Ma, J.D. Xing, G.F. Liu, D.W. Yi, H.G. Fu, J.J. Zhang, and Y.F. Li: Effect of chromium concentration on microstructure and properties of Fe-3.5B alloy. Mater. Sci. Eng., A 527, 6800 (2010).

    Article  Google Scholar 

  33. W.J. Wang, J.P. Lin, Y.L. Wang, and G.L. Chen: The corrosion of intermetallic alloys in liquid zinc. J. Alloys Compd. 428, 237 (2007).

    Article  CAS  Google Scholar 

  34. A.R. Marder: The metallurgy of zinc-coated steel. Prog. Mater. Sci. 45, 191 (2000).

    Article  CAS  Google Scholar 

  35. V.I. Dybkov and O.V. Duchenko: Growth kinetics of compound layers at the nickel-bismuth interface. J. Alloys Compd. 234, 295 (1996).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the financial support for this work from the Natural Science Foundation of China under Grant Nos. 51271142, 51301128, & 51274016, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant Nos. 20110201130008 & 20120201120005, the National Science Foundation for Post-doctoral Scientists of China under Grant Nos. 2012M521767 & 2013T60875, the Natural Science Foundation of Shaanxi Province under Grant No. 2014JQ7281, the Shaanxi provincial post-doctoral research project, and the Fundamental Research Funds of Xi’an Jiaotong University under Grant Nos. xjj2013038 & xjj2014167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengqiang Ma.

Additional information

Contributing Editor: Jürgen Eckert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Huang, Z., Xing, J. et al. Effect of crystal orientation on microstructure and properties of bulk Fe2B intermetallic. Journal of Materials Research 30, 257–265 (2015). https://doi.org/10.1557/jmr.2014.383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.383

Navigation