Skip to main content
Log in

Isothermal crystallization kinetics of syndiotactic polystyrene exposed to gamma radiation in vacuum

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of gamma radiation in vacuum on the isothermal crystallization kinetics of syndiotactic polystyrene (sPS) was investigated via differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and x-ray diffraction (XRD). Amorphous sPS samples were irradiated in vacuum, heated to 310 °C, cooled down to crystallization temperatures (Tcs) from 220 to 260 °C, and annealed for different times. Upon reheating, overlapping endothermic melting peaks depicted the various crystallization forms, α, β, and β′. The endotherms were resolved using Gaussian functions relating enthalpy changes to the endothermic envelope. Isothermal crystallization kinetic data were analyzed using Avrami’s model with Gaussian functions. The extent of crystallization of β and β′ forms increased with increasing crystallization time and temperature, while that of α form decreased. Crystallization half-time followed a modified Arrhenius equation. Crystallization activation energies for the β and β′ forms of sPS increased with increasing radiation doses. The results are compared to those of air irradiated sPS reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A. Torikai and H. Shibata: Photodegradation of polystyrene: Effect of structure on the formation of degradation products. Arabian J. Sci. Eng. 27, 11 (2002).

    CAS  Google Scholar 

  2. S.W. Moser, W.F. Harder, C.R. Hurlbut, and M.R. Kusner: Principles and practice of plastic scintillator design. Radiat. Phys. Chem. 41, 31 (1993).

    Article  CAS  Google Scholar 

  3. J.P. Harmon, J.F. Gaynor, and S.G. Taylor: Approaches to optimize scintillator polymers for optical radiation hardness. Radiat. Phys. Chem. 41, 153 (1993).

    Article  CAS  Google Scholar 

  4. V. Feygelman, J. Harmon, and J. Walker: Polysiloxane-based scintillators: 1,1′,2,2′-tetraphenylbutadiene as a secondary fluor. Nucl. Instrum. Methods Phys. Res., Sect. A 295, 94 (1990).

    Article  Google Scholar 

  5. J.S. Wallace, M.B. Sinclair, K.T. Gillen, and R.L. Clough: Color center annealing in γ-irradiated polystyrene under vacuum and air atmospheres. Radiat. Phys. Chem. 41, 85 (1993).

    Article  CAS  Google Scholar 

  6. I.J. Chiang, C.T. Hu, and S. Lee: Isothermal annealing of color centers in irradiated polystyrene in vacuum and air atmospheres. Mater. Chem. Phys. 70, 61 (2001).

    Article  CAS  Google Scholar 

  7. E.C. Onyiriuka, L.S. Hersh, and W. Hertl: Surface modification of polystyrene by gamma-radiation. Appl. Spectrosc. 44, 808 (1990).

    Article  CAS  Google Scholar 

  8. R.L. Clough, K.T. Gillen, G.M. Mallone, and J.S. Wallace: Color formation in irradiated polymers. Radiat. Phys. Chem. 48, 583 (1996).

    Article  CAS  Google Scholar 

  9. J.P. Harmon and J. Gaynor: The effect of gamma irradiation on color center formation in optical polymers. J. Polym. Sci., Part B: Polym. Phys. 31, 235 (1993).

    Article  CAS  Google Scholar 

  10. T. Diola, A. Okada, M. Mihara, and K. Nichols: Applications of syndiotactic polystyrene. In Syndiotactic Polystyrene, J. Schellenberg ed.; John Wiley & Sons, Inc, New York, 2010; p. 321.

    Google Scholar 

  11. N.J. Hermanson and T.E. Wessel: Syndiotactic polystyrene: A new polymer for high-performance medical applications. Medical Plastics and Biomaterials1998, http://www.devicelink.com/mpb/archive/98/07/001.html.

    Google Scholar 

  12. G. Guerra, V.M. Vitaglian, C.D. Rosa, V. Petraccone, and P. Corradini: Polymorphism in melt crystallized syndiotactic polystyrene samples. Macromolecules 23, 1539 (1990).

    Article  CAS  Google Scholar 

  13. M. Lu, X. Zhao, L. Chen, X. Xiong, J. Zhang, K. Mai, and C. Wu: Nucleation effect on polymorphism of melt-crystallized syndiotactic polystyrene. Polymer 52, 1102 (2011).

    Article  CAS  Google Scholar 

  14. K. Tashiro, Y. Ueno, A. Yoshioka, and M. Kobayashi: Molecular mechanism of solvent-induced crystallization of syndiotactic polystyrene glass. 1. Time-resolved measurements of infrared/Raman spectra and X-ray diffraction. Macromolecules 32, 310 (2001).

    Article  Google Scholar 

  15. F. de Candia, M. Carotenuto, L. Guadagno, and V. Vittoria: Polymorphism of syndiotactic polystyrene: Morphology of the solvent-induced crystalline forms. J. Macromol. Sci., Part B: Phys. 35, 265 (1996).

    Article  Google Scholar 

  16. Z. Suna, R.J. Morgana, and D.N. Lewis: Crystallization of syndiotactic polystyrene under pressure. Polymer 33, 660 (1992).

    Article  Google Scholar 

  17. B.G. Olson, T. Prodpran, A.M. Jamieson, and S. Nazarenko: Positron annihilation in syndiotactic polystyrene containing α and β crystalline forms. Polymer 43, 6775 (2002).

    Article  CAS  Google Scholar 

  18. D. Larobina, L. Sanguigno, V. Venditto, G. Guerra, and G. Mensilieri: Gas sorption and transport in syndiotactic polystyrene with nanoporous crystalline phase. Polymer 45, 429 (2004).

    Article  CAS  Google Scholar 

  19. T. Prodpran, S. Shenogin, and S. Nazarenko: Gas transport behavior of semicrystalline syndiotactic polystyrene containing α and β crystalline forms. Polymer 43, 2295 (2002).

    Article  CAS  Google Scholar 

  20. R.M. Ho, C.P. Lin, H.Y. Tsai, and E.M. Woo: Metastability studies of syndiotactic polystyrene polymorphism. Macromolecules 33, 6517 (2000).

    Article  CAS  Google Scholar 

  21. M. Rapacciuolo, C. Derosa, G. Guerra, G. Mensitieri, A. Apicella, and M.A. Delnobile: Different solvent stability of the crystalline polymorphic forms of syndiotactic polystyrene. J. Mater. Sci. Lett. 10, 1084 (1991).

    Article  CAS  Google Scholar 

  22. R.H. Lin and E.M. Woo: Melting behavior and identification of polymorphic crystals in syndiotactic polystyrene. Polymer 41, 121 (2000).

    Article  CAS  Google Scholar 

  23. B.K. Hong, W.H. Jo, S.C. Lee, and J. Kim: Correlation between melting behavior and polymorphism of syndiotactic polystyrene and its blend with poly(2,6-dimethyl-1-1,4-phenylene oxide). Polymer 39, 1793 (1998).

    Article  CAS  Google Scholar 

  24. C. Wang, Y.C. Hsu, and C.F. Lo: Melting behavior and equilibrium melting temperatures of syndiotactic polystyrene in α and β crystalline forms. Polymer 42, 8447 (2001).

    Article  CAS  Google Scholar 

  25. W. Zhou, M. Lu, and K. Mai: Isothermal crystallization, melting behavior and crystalline morphology of syndiotactic polystyrene blends with highly-impact polystyrene. Polymer 48, 3858 (2007).

    Article  CAS  Google Scholar 

  26. C.D. Rosa, O.D. de Ballesteros, M.D. Gennaro, and F. Auriemma: Crystallization from the melt of α and β forms of syndiotactic polystyrene. Polymer 44, 1861 (2003).

    Article  Google Scholar 

  27. Y.W. Ting, T. Nyugen, C.T. Hu, C.C. Chen, and S. Lee: Effect of gamma ray on isothermal crystallization kinetics of syndiotactic polystyrene. J. Mater. Res. 28, 3053 (2013).

    Article  CAS  Google Scholar 

  28. R.M. Ho, C.P. Lin, P.Y. Hsieh, and T.M. Chang: Isothermal crystallization-induced phase transition of syndiotactic polystyrene polymorphism. Macromolecules 34, 6727 (2001).

    Article  CAS  Google Scholar 

  29. C.K. Liu, T. Nguyen, T.J. Yang, and S. Lee: Melting and chemical behaviors of isothermally crystallized gamma-irradiated syndiotactic polystyrene. Polymer 50, 499 (2009).

    Article  CAS  Google Scholar 

  30. M. Avrami: Granulation, phase change, and microstructure kinetics of phase change I. J. Chem. Phys. 7, 1103 (1939).

    Article  CAS  Google Scholar 

  31. M. Avrami: Transformation-time relations for random distribution of nuclei kinetics of phase change II. J. Chem. Phys. 8, 212 (1940).

    Article  CAS  Google Scholar 

  32. M. Avrami: Granulation, phase change and microstructure kinetic of phase change III. J. Chem. Phys. 9, 177 (1941).

    Article  CAS  Google Scholar 

  33. E.M. Woo and F.S. Wu: On the melting behavior of polymorphic syndiotactic polystyrene and its behavior in a miscible state. Macromol. Chem. Phys. 199, 2041 (1998).

    Article  CAS  Google Scholar 

  34. R.D. Wessen: Melt crystallization kinetics of syndiotactic polystyrene. Polym. Eng. Sci. 34, 1157 (1994).

    Article  Google Scholar 

  35. Q. Chen, Y. Yu, T. Na, H. Zhang, and Z. Mao: Isothermal and non-isothermal melt-crystallization kinetics of syndiotactic polystyrene. J. Appl. Polym. Sci. 83, 2528 (2002).

    Article  CAS  Google Scholar 

  36. T.M. Wu, S.F. Hsu, C.F. Chen, and J.Y. Wu: Isothermal and non-isothermal crystallization kinetics of syndiotactic polystyrene/clay nano-composite. Polym. Eng. Sci. 44, 2288 (2004).

    Article  CAS  Google Scholar 

  37. C. Wang, C.L. Huang, Y.W. Cheng, Y.C. Cheng, and J. Shong: Radiation effects and re-crystallization mechanism of syndiotactic polystyrene with β′ crystalline form. Polymer 48, 7393 (2007).

    Article  CAS  Google Scholar 

  38. J.F. Rabek: Polymer Photodegradation: Mechanism and Experimental Methods (Chapman & Hall, New York, 1995); p 185.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was financially supported by the Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanboh Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuang, YF., Ting, YW., Hu, CT. et al. Isothermal crystallization kinetics of syndiotactic polystyrene exposed to gamma radiation in vacuum. Journal of Materials Research 30, 592–601 (2015). https://doi.org/10.1557/jmr.2014.402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.402

Navigation