Skip to main content
Log in

Resolution of structural transformation of intermediates in Al–Cu alloys during non-isothermal precipitation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Morphological evolution and phase transformation of metastable intermediate precipitates are critical to their mechanical properties for the non-isothermal processing. During the non-isothermal precipitation, the formation of the new phases usually couples with structural evolution. Traditional structural characterization has limitation to resolve comprehensive changes simultaneously. In this study, we report direct observation, precipitation sequence, and the details of concurrent morphological and structural changes of various intermediate precipitates during non-isothermal heating in the Al–Cu systems with different pretreatments. The structural heterogeneity during the non-isothermal precipitation processes is resolved into coexistence of two different precipitate phases and quantitatively studied in terms of the phase transition and the morphological evolution. This paper presents the in situ small- and wide-angle synchrotron x-ray scattering (SAXS and WAXS) to refine and to identify the mixed structural information during multiple precipitation stages. The WAXS results show that the precipitation sequence is θ″ → (θ″ + θ′) → θ′ → (θ″ + θ) → θ upon heating. Due to the fact of the specifically oriented SAXS intensity, the evolution of the aforementioned phase transformation is resolved by the refinement of the SAXS intensity integrated over the selected area. These methods reveal multiscale information that is not trivial comparing to the traditional characterization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. S.Y. Hu, M.I. Baskes, M. Stan, and L.Q. Chen: Atomistic calculations of interfacial energies, nucleus shape and size of θ′ precipitates in Al–Cu alloys. Acta Mater. 54, 4699–1707 (2006).

    Article  CAS  Google Scholar 

  2. L. Bourgeois, C. Dwyer, M. Weyland, J-F. Nie, and B.C. Muddle: Structure and energetics of the coherent interface between the θ′ precipitate phase and aluminium in Al–Cu. Acta Mater. 59, 7043–7050 (2011).

    Article  CAS  Google Scholar 

  3. A. Biswas, D.J. Siegel, C. Wolverton, and D.N. Seidman: Precipitates in Al–Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation. Acta Mater. 59, 6187–6204 (2011).

    Article  CAS  Google Scholar 

  4. A. Tolley, D. Mitlin, V. Radmilovic, and U. Dahmen: Transmission electron microscopy analysis of grain boundary precipitate-free-zones (PFZs) in an AlCuSiGe alloy. Mater. Sci. Eng., A 412, 204–213 (2005).

    Article  Google Scholar 

  5. J.F. Nie and B.C. Muddle: Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates. Acta Mater. 56, 3490–3501 (2008).

    Article  CAS  Google Scholar 

  6. A.W. Zhu, J. Chen, and E.A. Starke, Jr.: Precipitation strengthening of stress-aged Al–xCu alloys. Acta Mater. 48, 2239–2246 (2000).

    Article  CAS  Google Scholar 

  7. L. Bourgeois, C. Dwyer, M. Weyland, J-F. Nie, and B.C. Muddle: The magic thicknesses of θ′ precipitates in Sn-microalloyed Al–Cu. Acta Mater. 60, 633–644 (2012).

    Article  CAS  Google Scholar 

  8. Y. Li and G. Purdy: On the growth of Widmanstätten precipitates in an Al–Cu alloy. Acta Mater. 56, 364–368 (2008).

    Article  CAS  Google Scholar 

  9. H. Sehitoglu, T. Foglesong, and H. Maier: Precipitate effects on the mechanical behavior of aluminum copper alloys: Part II. modeling. Metall. Mater. Trans. A 36, 763–770 (2005).

    Article  Google Scholar 

  10. S.K. Son, M. Takeda, M. Mitome, Y. Bando, and T. Endo: Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures. Mater. Lett. 59, 629–632 (2005).

    Article  CAS  Google Scholar 

  11. H. Morito, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida, and K. Oikawa: Magnetic-field-induced strain of Fe–Ni–Ga in single-variant state. Appl. Phys. Lett. 83, 4993–4995 (2003).

    Article  CAS  Google Scholar 

  12. M.J. Starink and P. van Mourik: Cooling and heating rate dependence of precipitation in an Al–Cu alloy. Mater. Sci. Eng., A 156, 183–194 (1992).

    Article  Google Scholar 

  13. O. Glatter and O. Kratky: Small Angle X-ray Scattering (Academic Press, New York, 1982).

    Google Scholar 

  14. H.C. Liao, C.S. Tsao, T.H. Lin, M.H. Jao, C.M. Chuang, S.Y. Chang, Y.C. Huang, Y.T. Shao, C.Y. Chen, C.J. Su, U.S. Jeng, Y.F. Chen, and W.F. Su: Nanoparticle-tuned self-organization of a bulk heterojunction hybrid solar cell with enhanced performance. ACS Nano 6, 1657–1666 (2012).

    Article  CAS  Google Scholar 

  15. C.S. Tsao, E-W. Huang, M.H. Wen, T.Y. Kuo, S.L. Jeng, U-S. Jeng, and Y.S. Sun: Phase transformation and precipitation of an Al–Cu alloy during non-isothermal heating studied by in situ small-angle and wide-angle scattering. J. Alloys Compd. 579, 138–146 (2013).

    Article  CAS  Google Scholar 

  16. C.S. Tsao, C.Y. Chen, T.Y. Kuo, T.L. Lin, and M.S. Yu: Size distribution and coarsening kinetics of δ′ precipitates in Al–Li alloys considering temperature and concentration dependence. Mater. Sci. Eng., A 363, 228–233 (2003).

    Article  Google Scholar 

  17. C.S. Tsao, C.Y. Chen, and J.Y. Huang: Coarsening kinetics, thermodynamic properties, and interfacial characteristics of δ′ precipitates in Al–Li alloys taking into account the Gibbs-Thomson effect. Phys. Rev. B 70, 174104 (2004).

    Article  Google Scholar 

  18. C.S. Tsao, C.Y. Chen, U.S. Jeng, and T.Y. Kuo: Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys. Acta Mater. 54, 4621–4631 (2006).

    Article  CAS  Google Scholar 

  19. A. Deschamps and Y. Brechet: Influence of predeformation and ageing of an Al–Zn–Mg alloy II. Modeling of precipitation kinetics and yield stress. Acta Mater. 47, 293–305 (1998).

    Article  Google Scholar 

  20. M. Nicolas and A. Deschamps: Characterisation and modelling of precipitate evolution in an Al–Zn–Mg alloy during non-isothermal heat treatments. Acta Mater. 51, 6077–6094 (2003).

    Article  CAS  Google Scholar 

  21. H.S. Chou, X.H. Du, C.J. Lee, and J.C. Huang: Enhanced mechanical properties of multilayered micropillars of amorphous ZrCuTi and nanocrystalline Ta layers. Intermetallics 19, 1047–1051 (2011).

    Article  CAS  Google Scholar 

  22. P. Fratzl, F. Langmayr, and O. Paris: Evaluation of 3D small-angle scattering from non-spherical particles in single crystals. J. Appl. Crystallogr. 26, 820–826 (1993).

    Article  CAS  Google Scholar 

  23. F. De Geuser, F. Bley, and A. Deschamps: A new method for evaluating the size of plate-like precipitates by small-angle scattering. J. Appl. Crystallogr. 45, 1208–1218 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

We appreciate Prof. S. Esmaeili (University of Waterloo, Canada) for providing the Al–Cu samples and useful suggestions. EWH appreciates the financial support from National Science Council (NSC) 101-2221-E-008-039-MY3 Program. MHW and SYT thank the NSC-102-3113-P-007-014 Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E-Wen Huang or Cheng-Si Tsao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, EW., Tsao, CS., Wen, MH. et al. Resolution of structural transformation of intermediates in Al–Cu alloys during non-isothermal precipitation. Journal of Materials Research 29, 874–879 (2014). https://doi.org/10.1557/jmr.2014.46

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.46

Navigation