Skip to main content
Log in

Thermal stability of the nanostructure of mechanically milled Cu–5 vol% Al2O3 nanocomposite powder particles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Isothermal annealing in the temperature range of 300–600 °C, microstructural characterization, and analysis of the grain growth kinetics during annealing were carried out for Cu–5 vol% Al2O3 nanocomposite powder particles produced by high energy mechanical milling. When the annealing temperature was 400 °C or lower, only reduction in dislocation density occurred during annealing. When the annealing temperature was 500 °C or higher, reduction in dislocation density, abnormal grain growth of the nanocrystalline Cu matrix, and coarsening of the Al2O3 nanoparticles occurred. It has been found that the microstructure of the nanocrystalline Cu matrix of the nanocomposite exhibits a far higher thermal stability than that of monolithic nanocrystalline Cu, even though the apparent activation energy of the grain growth of the former is similar to that of the latter over the temperature range of 400–600 °C, showing the dramatic drag effects of finely distributed Al2O3 nanoparticles and Al3+/O2− clusters on the grain boundary motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. B.Q. Han, J. Ye, A.P. Newbery, Y.T. Zhu, J.M. Schoenung, and E.J. Lavernia: In Bulk Nanostructured Materials, M.J. Zehetbauer and Y.T. Zhu ed.; Wiley-VCH Verlag: Weinheim, 2009; p. 273.

    Chapter  Google Scholar 

  2. D.L. Zhang, S. Raynova, C.C Koch, R.O. Scattergood, and K.M. Youssef: Consolidation of a Cu-2.5 vol.% Al2O3 powder using high energy mechanical milling. Mater. Sci. Eng., A 410, 375 (2005).

    Article  CAS  Google Scholar 

  3. S. Cheng, E. Ma, Y.M Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P Trociewitz, and K. Han: Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater. 53(5), 1521 (2005).

    Article  CAS  Google Scholar 

  4. L. He and E. Ma: Processing and microhardness of bulk Cu-Fe nanocomposites. Nanostruct. Mater. 7(3), 327 (1996).

    Article  CAS  Google Scholar 

  5. C. Langlois, M.J. Hytch, S. Lartigue-Korinek, Y. Champion, and P. Langlois: Synthesis and microstructure of bulk nanocrystalline copper. Metall. Mater. Trans. A 36(12), 3451 (2005).

    Article  Google Scholar 

  6. M. Pozuelo, C. Melnyk, W.H. Kao, and J-M. Yang: Cryomilling and spark plasma sintering of nanocrystalline magnesium-based alloy. J. Mater. Res. 26(07), 904 (2011).

    Article  CAS  Google Scholar 

  7. C.C. Koch, R.O. Scattergood, K.A. Darling, and J.E. Semones: Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43(23), 7264 (2008).

    Article  CAS  Google Scholar 

  8. J. Weissmüller: Alloy effects in nanostructures. Nanostruct. Mater. 3(1), 261 (1993).

    Article  Google Scholar 

  9. B.K. VanLeeuwen, K.A. Darling, C.C. Koch, R.O. Scattergood, and B.G. Butler: Thermal stability of nanocrystalline Pd81Zr19. Acta Mater. 58(12), 4292 (2010).

    Article  CAS  Google Scholar 

  10. C.E. Krill, H. Ehrhardt, and R. Birringer: Thermodynamic stabilization of nanocrystallinity. Z. Metallkd. 96(10), 1134 (2005).

    Article  CAS  Google Scholar 

  11. K.A. Darling, B.K. VanLeeuwen, C.C. Koch, and R.O. Scattergood: Thermal stability of nanocrystalline Fe–Zr alloys. Mater. Sci. Eng., A 527(15), 3572 (2010).

    Article  CAS  Google Scholar 

  12. M.A. Atwater, R.O. Scattergood, and C.C. Koch: The stabilization of nanocrystalline copper by zirconium. Mater. Sci. Eng., A 559, 250 (2013).

    Article  CAS  Google Scholar 

  13. T.R. Malow and C.C. Koch: Grain growth in nanocrystalline iron prepared by mechanical attrition. Acta Mater. 45(5), 2177 (1997).

    Article  CAS  Google Scholar 

  14. K.W. Liu and F. Mücklich: Thermal stability of nano-RuAl produced by mechanical alloying. Acta Mater. 49(3), 395 (2001).

    Article  CAS  Google Scholar 

  15. T. Chookajorn, H.A. Murdoch, and C.A. Schuh: Design of stable nanocrystalline alloys. Science 337(6097), 951 (2012).

    Article  CAS  Google Scholar 

  16. X. Zhang, N.Q. Vo, P. Bellon, and R.S. Averback: Microstructural stability of nanostructured Cu–Nb–W alloys during high-temperature annealing and irradiation. Acta Mater. 59(13), 5332 (2011).

    Article  CAS  Google Scholar 

  17. L. Shaw, H. Luo, J. Villegas, and D. Miracle: Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying. Acta Mater. 51(9), 2647 (2003).

    Article  CAS  Google Scholar 

  18. R.J. Perez, B. Huang, and E.J. Lavernia: Thermal stability of nanocrystalline Fe-10 wt.% Al produced by cryogenic mechanical alloying. Nanostruct. Mater. 7(5), 565 (1996).

    Article  CAS  Google Scholar 

  19. D.G. Morris and M.A. Morris: Microstructure and strength of nanocrystalline copper alloy prepared by mechanical alloying. Acta Metall. 39(8), 1763 (1991).

    Article  CAS  Google Scholar 

  20. B. Huang, R.J. Perez, and E.J. Lavernia: Grain growth of nanocrystalline Fe–Al alloys produced by cryomilling in liquid argon and nitrogen. Mater. Sci. Eng., A 255(1), 124 (1998).

    Article  Google Scholar 

  21. L. Hashemi-Sadraei, S.E. Mousavi, R. Vogt, Y. Li, Z. Zhang, E.J. Lavernia, and J.M. Schoenung: Influence of nitrogen content on thermal stability and grain growth kinetics of cryomilled Al nanocomposites. Metall. Mater. Trans. A 43(2), 747 (2012).

    Article  CAS  Google Scholar 

  22. E. Botcharova, J. Freudenberger, and L. Schultz: Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu–Nb alloys. Acta Mater. 54(12), 3333 (2006).

    Article  CAS  Google Scholar 

  23. J.I. Langford and A.J.C. Wilson: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102 (1978).

    Article  CAS  Google Scholar 

  24. U. Holzwarth and N. Gibson: The Scherrer equation versus the “Debye-Scherrer equation”. Nat. Nanotech. 6(9), 534 (2011).

    Article  CAS  Google Scholar 

  25. A.R. Stokes and A.J.C. Wilson: The diffraction of X rays by distorted crystal aggregates-I. Proc. Phys. Soc. 56(3), 174 (1944).

    Article  CAS  Google Scholar 

  26. G.K. Williamson and R.E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the x-ray debye-scherrer spectrum. Philos. Mag. 1(1), 34 (1956).

    Article  CAS  Google Scholar 

  27. Y.H. Zhao, K. Lu, and K. Zhang: Microstructure evolution and thermal properties in nanocrystalline Cu during mechanical attrition. Phys. Rev. B 66(8), 085404 (2002).

    Article  CAS  Google Scholar 

  28. S. Ni, Y.B. Wang, X.Z. Liao, S.N. Alhajeri, H.Q. Li, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, T.G. Langdon, and Y.T. Zhu: Grain growth and dislocation density evolution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion. Scripta Mater. 64(4), 327 (2011).

    Article  CAS  Google Scholar 

  29. J. Čížek, I. Procházka, M. Cieslar, R. Kužel, Z. Matěj, V. Cherkaska, R.K. Islamgaliev, and O. Kulyasova: Influence of ceramic nanoparticles on grain growth in ultra fine grained copper prepared by high pressure torsion. Phys. Status Solidi C 4(10), 3587 (2007).

    Article  CAS  Google Scholar 

  30. J. Ďurišin, K. Ďurišinová, M. Orolínová, and K. Saksl: Effect of the MgO particles on the nanocrystalline copper grain stability. Mater. Lett. 58(29), 3796 (2004).

    Article  CAS  Google Scholar 

  31. J.E. Burke: Some factors affecting the rate of grain growth in metals. Trans. Metall. Soc. AIME 180, 73 (1949).

    Google Scholar 

  32. H.V. Atkinson: Overview no. 65: Theories of normal grain growth in pure single phase systems. Acta Metall. 36(3), 469 (1988).

    Article  CAS  Google Scholar 

  33. F. Zhou, J. Lee, and E.J. Lavernia: Grain growth kinetics of a mechanically milled nanocrystalline Al. Scripta Mater. 44(8–9), 2013 (2001).

    Article  CAS  Google Scholar 

  34. A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer, and D.T. Wu: Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater. 47(7), 2143 (1999).

    Article  CAS  Google Scholar 

  35. L. Lu, N.R. Tao, L.B. Wang, B.Z. Ding, and K. Lu: Grain growth and strain release in nanocrystalline copper. J. Appl. Phys. 89(11), 6408 (2001).

    Article  CAS  Google Scholar 

  36. G. Gottstein, L.S. Shvindlerman, and B. Zhao: Thermodynamics and kinetics of grain boundary triple junctions in metals: Recent developments. Scripta Mater. 62(12), 914 (2010).

    Article  CAS  Google Scholar 

  37. L.S. Shvindlerman and G. Gottstein: Efficiency of drag mechanisms for inhibition of grain growth in nanocrystalline materials. Z. Metallkd. 95(4), 239 (2004).

    Article  CAS  Google Scholar 

  38. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed.; Elsevier Science Ltd.: Oxford, UK, 2004; pp. 200–244.

    Google Scholar 

  39. S. Simões, R. Calinas, M.T. Vieira, M.F. Vieira, and P.J. Ferreira: In situ TEM study of grain growth in nanocrystalline copper thin films. Nanotechology 21(14), 145701 (2010).

    Article  CAS  Google Scholar 

  40. J. Horvath, R. Birringer, and H. Gleiter: Diffusion in nanocrystalline material. Solid State Commun. 62(5), 319 (1987).

    Article  CAS  Google Scholar 

  41. S.K. Ganapathi, D.M. Owen, and A.H. Chokshi: The kinetics of grain growth in nanocrystalline copper. Scripta Metall. 25(12), 2699 (1991).

    Article  Google Scholar 

  42. W. Dickenscheid, R. Birringer, H. Gleiter, O. Kanert, B. Michel, and B. Günther: Investigation of self-diffusion in nanocrystalline copper by NMR. Solid State Commun. 79(8), 683 (1991).

    Article  CAS  Google Scholar 

  43. Z.H. Cao, F. Wang, L. Wang, and X.K. Meng: Coupling effect of the electric and temperature fields on the growth of nanocrystalline copper films. Phys. Rev. B 81(11), 113405 (2010).

    Article  CAS  Google Scholar 

  44. H. Mehrer: Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, 1st ed.; Springer-Verlag: Berlin, 2007; pp. 304.

    Book  Google Scholar 

  45. C.S. Smith: Grains, phases, and interfaces: as interpretation of microstructure. Met. Technol. 15(4), 1 (1948).

    Google Scholar 

  46. J. Čížek, I. Procházka, R. Kužel, and R. Islamgaliev: In Nanostructured Materials, H. Hofmann, Z. Rahman, and U. Schubert eds.; Springer: Vienna, 2002; p. 137.

    Chapter  Google Scholar 

Download references

ACKNOWLEDGMENTS

The funding from the China Scholarship Council (CSC), National Natural Science Foundation of China (Project No. 51271115), Ministry of Science and Technology, China (Project No. 2012CB619600), and Ministry of Business, Innovation and Employment, New Zealand (Contract No. UOWX1001) to support this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deliang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, D., Zhang, D., Kong, C. et al. Thermal stability of the nanostructure of mechanically milled Cu–5 vol% Al2O3 nanocomposite powder particles. Journal of Materials Research 29, 996–1005 (2014). https://doi.org/10.1557/jmr.2014.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.79

Navigation