Skip to main content

Advertisement

Log in

Anisotropic crystal–melt interfacial energy and stiffness of aluminum

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The crystal–melt interfacial free energy is an important quantity governing many kinetic phenomena including solidification and crystal growth. Although general calculation methods are available, it is still difficult to obtain the interfacial energies that differ only slightly due to anisotropy. Here, we report such a calculation of Al crystal–melt interfacial energy based on the general framework of the capillary fluctuation method (CFM). The subtle dependence of both the melting temperature and interfacial free energy at melting temperature on the crystal interface orientation was examined. For Al, the average melting temperature is obtained at 934.79 ± 5 K and the orientationally averaged mean interfacial free energy is 98.35 mJ/m2. In addition, the anisotropy of the interfacial free energy is found weak, nevertheless with the values ranked as γ100 > γ110 > γ111.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. D. Turnbull: Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022 (1950).

    Article  CAS  Google Scholar 

  2. D. Turnbull and R.E. Cech: Microscopic observation of the solidification of small metal droplets. J. Appl. Phys. 21, 804 (1950).

    Article  Google Scholar 

  3. K.F. Kelton: Crystal nucleation in liquids and glasses. Solid State Phys. 45, 75 (1991).

    Article  CAS  Google Scholar 

  4. D. Turnbull: Kinetics of solidification of supercooled liquid mercury droplets. J. Chem. Phys. 20, 411 (1952).

    Article  CAS  Google Scholar 

  5. D.A. Kessler, J. Koplik, and H. Levine: Geometrical models of interface evolution. II. Numerical simulation. Phys. Rev. A 29, 3161 (1984).

    Article  Google Scholar 

  6. D.A. Kessler and H. Levine: Velocity selection in dendritic growth. Phys. Rev. B 33, 7867 (1986).

    Article  CAS  Google Scholar 

  7. J.S. Langer: Existence of needle crystals in local models of solidification. Phys. Rev. A 33, 435 (1986).

    Article  CAS  Google Scholar 

  8. A. Barbieri and J.S. Langer: Predictions of dendritic growth rates in the linearized solvability theory. Phys. Rev. A 39, 5314 (1989).

    Article  CAS  Google Scholar 

  9. E.D. Zanotto: Crystallization of liquids and glasses. Braz. J. Phys. 22, 77 (1992).

    CAS  Google Scholar 

  10. A. Cacciuto, S. Auer, and D. Frenkel: Solid–liquid interfacial free energy of small colloidal hard-sphere crystals. J. Chem. Phys. 119, 7467 (2003).

    Article  CAS  Google Scholar 

  11. T. Haxhimali, A. Karma, F. Gonzales, and M. Rappaz: Orientation selection in dendritic evolution. Nat. Mater. 5, 660 (2006).

    Article  CAS  Google Scholar 

  12. R.P.A. Dullens, D.G.A.L. Aarts, and W.K. Kegel: Colloidal crystal–fluid interfaces. Philos. Mag. Lett. 87, 893 (2007).

    Article  CAS  Google Scholar 

  13. M. Gündüz and J.D. Hunt: The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems. Acta Metall. 33, 1651 (1985).

    Article  Google Scholar 

  14. R.E. Napolitano, S. Liu, and R. Trivedi: Experimental measurement of anisotropy in crystal-melt interfacial energy. Interface Sci. 10, 217 (2002).

    Article  CAS  Google Scholar 

  15. K. Keşlıoğlu, M. Gündüz, H. Kaya, and E. Çadırlı: Solid-liquid interfacial energy in the Al-Ti system. Mater. Lett. 58, 3067 (2004).

    Article  CAS  Google Scholar 

  16. J.J. Hoyt, M. Asta, and A. Karma: Method for computing the anisotropy of the solid-liquid interfacial free energy. Phys. Rev. Lett. 86, 5530 (2001).

    Article  CAS  Google Scholar 

  17. N. Akino, F. Schmid, and M.P. Allen: Molecular-dynamics study of the nematic-isotropic interface. Phys. Rev. E 63, 041706 (2001).

    Article  CAS  Google Scholar 

  18. J.J. Hoyt and M. Asta: Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag. Phys. Rev. B 65, 214106 (2002).

    Article  CAS  Google Scholar 

  19. M. Asta, J.J. Hoyt, and A. Karma: Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations. Phys. Rev. B 66, 100101 (2002).

    Article  CAS  Google Scholar 

  20. J.R. Morris: Complete mapping of the anisotropic free energy of the crystal-melt interface in Al. Phys. Rev. B 66, 144104 (2002).

    Article  CAS  Google Scholar 

  21. J.R. Morris and X.Y. Song: The anisotropic free energy of the Lennard-Jones crystal-melt interface. J. Chem. Phys. 119, 3920 (2003).

    Article  CAS  Google Scholar 

  22. D.Y. Sun, M. Asta, and J.J. Hoyt: Crystal-melt interfacial free energies in metals: fcc versus bcc. Phys. Rev. B 69, 174103 (2004).

    Article  CAS  Google Scholar 

  23. Y. Mu, A. Houk, and X.Y. Song: Anisotropic interfacial free energies of the hard-sphere crystal-melt interfaces. J. Phys. Chem. B 109, 6500 (2005).

    Article  CAS  Google Scholar 

  24. R.L. Davidchack, J.R. Morris, and B.B. Laird: The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations. J. Chem. Phys. 125, 094710 (2006).

    Article  CAS  Google Scholar 

  25. S.M. Foiles and J.J. Hoyt: Computation of grain boundary stiffness and mobility from boundary fluctuations. Acta Mater. 54, 3351 (2006).

    Article  CAS  Google Scholar 

  26. S. Wolfsheimer, C. Tanase, K. Shundyak, R.V. Roij, and T. Schilling: Isotropic-nematic interface in suspension of hard rods: Mean-field properties and capillary waves. Phys. Rev. E 73, 061703 (2006).

    Article  CAS  Google Scholar 

  27. X.B. Feng and B.B. Laird: Calculation of the crystal-melt interfacial free energy of succinonitrile from molecular simulation. J. Chem. Phys. 124, 044707 (2006).

    Article  CAS  Google Scholar 

  28. D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, and D.J. Srolovitz: Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg. Phys. Rev. B 73, 024116 (2006).

    Article  CAS  Google Scholar 

  29. J.J. Hoyt, M. Asta, and D.Y. Sun: Molecular dynamics simulations of the crystal-melt interfacial free energy and mobility in Mo and V. Philos. Mag. 86, 3651 (2006).

    Article  CAS  Google Scholar 

  30. J.R. Morris, M.I. Mendelev, and D.J. Srolovitz: A comparision of crystal-melt interfacial free energies using different Al potentials. J. Non-Cryst. Solids 353, 3565 (2007).

    Article  CAS  Google Scholar 

  31. C.A. Becker, D. Olmsted, M. Asta, J.J. Hoyt, and S.M. Foiles: Atomistic underpinnings for orientation selection in alloy dendritic growth. Phys. Rev. Lett. 98, 125701 (2007).

    Article  CAS  Google Scholar 

  32. M. Amini and B.B. Laird: Crystal-melt interfacial free energy of binary hard spheres from capillary fluctuations. Phys. Rev. B 78, 144112 (2008).

    Article  CAS  Google Scholar 

  33. C.A. Becker, D.L. Olmsted, M. Asta, J.J. Hoyt, and S.M. Folies: Atomistic simulations of crystal-melt interfaces in a model binary alloy: Interfacial free energies adsorption coefficients, and excess entropy. Phys. Rev. B 79, 054109 (2009).

    Article  CAS  Google Scholar 

  34. R.E. Rozas and J. Horbach: Capillary wave analysis of rough solid-liquid interfaces in nickel. EPL 93, 26006 (2011).

    Article  CAS  Google Scholar 

  35. A.A. Potter and J.J. Hoyt: A molecular dynamics simulation study of the crystal-melt interfacial free energy and its anisotropy in the Cu-Ag-Cu ternary system. J. Cryst. Growth 327, 227 (2011).

    Article  CAS  Google Scholar 

  36. J.R. Morris, C.Z. Wang, K.M. Ho, and C.T. Chan: Melting line of aluminum from simulations of coexisting phases. Phys. Rev. B 49, 3109 (1994).

    Article  CAS  Google Scholar 

  37. A. Karma: Fluctuations in solidification. Phys. Rev. E 48, 3441 (1993).

    Article  CAS  Google Scholar 

  38. W.R. Fehlner and S.H. Vosko: A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties. Can. J. Phys. 54, 2159 (1976).

    Article  Google Scholar 

  39. M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta: Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos. Mag. 88, 1723 (2008).

    Article  CAS  Google Scholar 

  40. X.M. Bai and M. Li: Calculation of solid-liquid interfacial free energy: A classical nucleation theory based approach. J. Chem. Phys. 124, 124707 (2006).

    Article  CAS  Google Scholar 

  41. C.I. Smithels: Metals Reference Book, 5th ed. (Butterworths, London, 1976); pp. 105–150.

    Google Scholar 

  42. J.J. Hoyt, Z.T. Trautt, and M. Upmanyu: Fluctuations in molecular dynamics simulations. Math. Comput. Simul. 80, 1382 (2010).

    Article  Google Scholar 

  43. J. Mei and J.W. Davenport: Free-energy calculations and the melting point of Al. Phys. Rev. B 46, 21 (1992).

    Article  CAS  Google Scholar 

  44. J.B. Sturgeon and B.B. Laird: Adjusting the melting point of a model system via Gibbs-Duhem integration: Application to a model of aluminum. Phys. Rev. B 62, 14720 (2000).

    Article  CAS  Google Scholar 

  45. M.I. Mendelev, D.J. Srolovitz, G.J. Ackland, and S. Han: Effect of Fe segregation on the migration of a non-symmetric Σ5 tilt grain boundary in Al. J. Mater. Res. 20, 208 (2005).

    Article  CAS  Google Scholar 

  46. F. Ecolessi and J.B. Adams: Interatomic potentials from first-principles calculations: The force-matching method. Europhys. Lett. 26, 583 (1994).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to acknowledge the financial support to this work provided by the NSF of China (041303402) and National Magnetic Confinement Fusion Science program of China under Grant (2013GB109004, 2014GB117000). The work was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1(A) and was also supported by Tsinghua National Laboratory for Information Science and Technology. M.L. acknowledges the support provided by the National Thousand Talents Program of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ben Xu or Mo Li.

APPENDIX: ERROR ANALYSIS

APPENDIX: ERROR ANALYSIS

According to Eq. (1), the interfacial stiffness γ̃ is related to the size of the capillary fluctuation modes, the later terms can be obtained from simulation directly. Therefore, the error of γ̃ comes from the distributions of capillary fluctuation modes <∣A(k)∣2 × k2>, which can be expressed as

$$A\left( k \right) = {a_k} + i{b_k}\quad .$$
(8)

Figure 6 illustrated the distributions of ∣A(k)∣ × k for (100)[001] orientation, picked out from 4000 interface profiles for each simulation. We found that except for the longest mode (K = 1), both ak × k and bk × k tend to be Gaussian, and the correlation coefficient r is close to 0, the statistical data are shown in Table IV.

FIG. 6
figure 6

Distribution of interface fluctuation wave’s amplitude. The left figure represents the real part of the amplitude whereas the right one represents the imaginary part. The solid lines are Gaussian.

TABLE IV Distribution of interface fluctuation wave’s amplitude for (100)[001] orientations hypothesis testing.

We also conducted a Chi-square hypothesis testing for ∣A(k)∣ × k and found that most of the modes can be considered as 2D-Gaussian. In hypothesis testing, we used 6 × 6 inspection intervals, and the observations of samples χ2 are shown in Table IV. If significance level α was selected as 5%, the quantile of χ0.95(25) would be 37.652. It is found that for all modes except K = 1, ∣A(k)∣ × k follows 2D-Gaussian or similar distribution. This situation can be explained by different relaxation times, where the time correlation function42 can be expressed by

$$\left\langle {A\left( {k,t} \right){A^*}\left( {k,0} \right)} \right\rangle = \left\langle {{{\left| {A\left( k \right)} \right|}^2}} \right\rangle \exp \left[ { - {\rm{\mu \Gamma }}{k^2}t} \right]\quad ,$$
(9)

where μ is the kinetic coefficient and Γ = γ̃TM/LV, TM denotes the melting temperature and LV is the latent heat of fusion. Here, τ(t) is defined as

$$\tau \left( t \right) = {{\left\langle {A\left( {k,t} \right){A^*}\left( {k,0} \right)} \right\rangle } \over {\left\langle {{{\left| {A\left( k \right)} \right|}^2}} \right\rangle }}\quad .$$
(10)

In Table IV, the relaxation times are given when τ = 0.1, the value can be considered as there is no relation between two interface profiles. For the longest mode (K = 1), this value is 372 ps, which is very large in simulation time, lead to dependence of ∣A(k)∣ × k. For the short mode, this independence becomes very weak and the distribution of ∣A(k)∣ × k tends to be 2D-Gaussian.

From Table IV, the averages of ak × k and bk × ka, μb) are close to 0, it is easy to be explained by fluctuation. The distributions of ak × k and bk × k are expressed below

$${a_k} \times k \sim N\left( {0,{\rm{\sigma }}_a^2} \right)\quad ,$$
(11)
$${b_k} \times k \sim N\left( {0,{\rm{\sigma }}_b^2} \right)\quad ,$$
(12)

where σa2 and σb2 denote the variance of ak × k and bk × k, respectively. From the statistics one can acquire

$${1 \over {{\rm{\sigma }}_a^2}}\sum\limits_{i = 1}^n {a_k^2 \times {k^2} \sim {{\rm{\chi }}^2}\left( n \right)} \to N\left( {n,2n} \right)\quad ,$$
(13)
$${1 \over {{\rm{\sigma }}_b^2}}\sum\limits_{i = 1}^n {b_k^2 \times {k^2} \sim {{\rm{\chi }}^2}\left( n \right)} \to N\left( {n,2n} \right)\quad ,$$
(14)

and the distribution of <∣A(k)∣2 × k2> would be

$$\left\langle {{{\left| {A\left( k \right)} \right|}^2} \times {k^2}} \right\rangle \sim N\left[ {\left( {{\rm{\sigma }}_a^2 + {\rm{\sigma }}_b^2} \right),{{2\left( {{\rm{\sigma }}_a^4 + {\rm{\sigma }}_b^4} \right)} \over n}} \right]\quad ,$$
(15)

where n is the number of samples, the value of 4000 in our work. From statistics, one can get the 95% confidence intervals of <∣A(k)∣2 × k2> and γ̃(k) combining Eq. (1). Figure 7 shows the error bars of γ̃(k) for three orientations, by averaging the γ̃(k) at different k, the 95% confidence intervals of γ̃ can be acquired, as shown in Table II.

FIG. 7
figure 7

Error analysis of stiffness of different interface orientations, error bars indicate the 95% confidence intervals. The symbols used here are for different interfaces: ■ for (100)[001] interface, ● for (110)[001] interface, and ▲ for (111) \(\left[ {1\bar 10} \right]\) interface.

Moreover, the distribution of ∣A(k)∣2 × k2 should follow Boltzmann distribution coming from the derivation of Eq. (1) as:

$$p\left( {{{\left| {A\left( k \right)} \right|}^2} \times {k^2}} \right) = {{bL\tilde \gamma } \over {{k_{\rm{B}}}T}}\exp \left( { - {{\left| {A\left( k \right)} \right|}^2} \times {k^2} \times {{bL\tilde \gamma } \over {{k_{\rm{B}}}T}}} \right)\quad .$$
(16)

Indeed, ak × k and bk × k should obey the same distribution theoretically, with σa2 = σb2 = σ2. Therefore, the distribution of ∣A(k)∣2 × k2 would be written as:

$$\frac{|A(k)|^2\times k^2}{\sigma^2} \sim \chi^2(2).$$
(17)

From Eq. (17), the probability density of ∣A(k)∣2 × k2 should be:

$$p\left( {{{\left| {A\left( k \right)} \right|}^2} \times {k^2}} \right) = {1 \over {2{{\rm{\sigma }}^2}}}\exp \left( { - {{{{\left| {A\left( k \right)} \right|}^2} \times {k^2}} \over {2{{\rm{\sigma }}^2}}}} \right)\quad .$$
(18)

By comparison of Eq. (18) with Eq. (16), it can be found that 2σ2 = kBT/bLγ̃. At the same time, the distribution of <∣A(k)∣2 × k2> would be written as:

$$\left\langle {{{\left| {A\left( k \right)} \right|}^2} \times {k^2}} \right\rangle \sim N\left( {2{{\rm{\sigma }}^2},{{4{{\rm{\sigma }}^4}} \over n}} \right)\quad .$$
(19)

This equation illustrated the Gaussian distribution of <∣A(k)∣2 × k2> in the case of σa2 = σb2, while the statistical data of these two parameters in our simulations are not necessarily the same (see Table IV). Consequently, we use Eq. (15) instead of (19) for error estimation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Xu, B., Li, Q. et al. Anisotropic crystal–melt interfacial energy and stiffness of aluminum. Journal of Materials Research 30, 1827–1835 (2015). https://doi.org/10.1557/jmr.2015.131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.131

Navigation