Skip to main content
Log in

Microcompression tests of single-crystalline and ultrafine grain Bi2Te3 thermoelectric material

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Highly textured, ultrafine grain pure Bi2Te3 has been obtained by applying large-strain high-pressure torsion (HPT) to hot-pressed (HP) coarse grain material. Its thermal conductivity is significantly smaller than the conductivity of HP Bi2Te3, and its crystallographic texture and mechanical properties significantly improved. The mechanical properties of both, coarse grain and ultrafine grain, samples have been assessed by compression tests of 2 µm diameter micropillars machined by focused ion beam. The micropillars built from coarse grain samples are single crystalline, those built from ultrafine grain materials are an order of magnitude larger than their grain size. The test results put in evidence the elastic and plastic anisotropy of Bi2Te3 and the significant strengthening and toughening effect of ultrafine grain refining. For instance, after an equivalent strain of about 100, the Vickers hardness (in kg mm−2) increases from 60 to 120. Simultaneously, about a 40% reduction of the thermal conductivity has been measured, and a very strong basal texture is developed normal to the torsion axis. Such combination of properties looks very promising for simultaneously enhancing the thermoelectric figure of merit and the mechanical reliability of Bi2Te3-based alloys through HPT processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. S.B. Riffat and X. Ma: Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 23(8), 913 (2003).

    Article  Google Scholar 

  2. D.M. Rowe: Thermoelectrics Handbook: Macro to Nano (CRC Press, London, New York, Tokyo, 2006); pp. 1–5.

    Google Scholar 

  3. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466 (2009).

    Article  CAS  Google Scholar 

  4. D.H. Kim and T. Mitani: Thermoelectric properties of fine-grained Bi2Te3 alloys. J. Alloys Compd. 399, 14 (2005).

    Article  CAS  Google Scholar 

  5. Z. Zhang, P.A. Sharma, E.J. Lavernia, and N. Yang: Thermoelectric and transport properties of nanostructured Bi2Te3 by spark plasma sintering. J. Mater. Res. 26(3), 475 (2011).

    Article  CAS  Google Scholar 

  6. J.O. Jenkins and J.A. Rayne: Elastic moduli of Bi2Te3 from 4.2 to 300 K. Phys. Lett. A 30(6), 349 (1969).

    Article  CAS  Google Scholar 

  7. D.M. Rowe: CRC Handbook of Thermoelectrics (CRC Press, London, New York, Washington, D.C., 1995).

    Book  Google Scholar 

  8. H.W. Jeon, H.P. Ha, D-B. Hyun, and J.D. Shim: Electrical and thermoelectrical properties of undoped Bi2Te3-Sb2Te3 and Bi2Te3-Sb2Te3-Sb2Se3 single crystals. J. Phys. Chem. Solids 52(4), 579 (1991).

    Article  CAS  Google Scholar 

  9. T.E. Svechnikova, L.E. Shelimova, P.P. Konstantinov, M.A. Kretova, E.S. Avilov, V.S. Zemskov, C. Stiewe, and A. Zuber: Thermoelectric properties. Inorg. Mater. 41(10), 1043–1049 (2005).

    Article  CAS  Google Scholar 

  10. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang: Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1−x crystals prepared via zone melting. J. Cryst. Growth 277, 258 (2005).

    Article  CAS  Google Scholar 

  11. D.H. Kim, C. Kim, K-C. Je, G.H. Ha, and H. Kim: Fabrication and thermoelectric properties of c-axis-aligned Bi0.5Sb1.5Te3 with a high magnetic field. Acta Mater. 59(12), 4957 (2011).

    Article  CAS  Google Scholar 

  12. R. Valiev, R. Islamgaliev, and I. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45(2), 103 (2000).

    Article  CAS  Google Scholar 

  13. L.D. Zhao, B-P. Zhang, W.S. Liu, H.L. Zhang, and J-F. Li: Effects of annealing on electrical properties of n-type Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloys Compd. 467, 91 (2009).

    Article  CAS  Google Scholar 

  14. L.P. Hu, X.H. Liu, H.H. Xie, J.J. Shen, T.J. Zhu, and X.B. Zhao: Improving thermoelectric properties of n-type bismuth–telluride-based alloys by deformation-induced lattice defects and texture enhancement. Acta Mater. 60(11), 4431 (2012).

    Article  CAS  Google Scholar 

  15. L.D. Zhao, B-P. Zhang, J-F. Li, H.L. Zhang, and W.S. Liu: Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci. 10(5), 651 (2008).

    Article  CAS  Google Scholar 

  16. H. Böttner, D.G. Ebling, A. Jacquot, J. König, L. Kirste, and J. Schmidt: Structural and mechanical properties of spark plasma sintered n- and p-type bismuth telluride alloys. Phys. Status Solidi RRL 1(6), 235 (2007).

    Article  CAS  Google Scholar 

  17. M.D. Uchic and D.M. Dimiduk: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng., A 400–401, 268 (2005).

    Article  CAS  Google Scholar 

  18. C.A. Volkert and E.T. Lilleodden: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86(33–35), 5567 (2006).

    Article  CAS  Google Scholar 

  19. G. Kavei and M.A. Karami: Formation of anti-site defects and bismuth overstoichiometry in p-type Sb2−xBixTe3 thermoelectric crystals. Eur. Phys. J. Appl. Phys. 42, 67 (2008).

    Article  CAS  Google Scholar 

  20. Š. Mikmeková, K. Matsuda, K. Watanabe, S. Ikeno, I. Müllerová, and L. Frank: FIB induced damage examined with the low energy SEM. Mater. Trans. 52(3), 292 (2011).

    Article  CAS  Google Scholar 

  21. D. Kiener, C. Motz, M. Rester, M. Jenko, and G. Dehm: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng., A 459(1–2), 262 (2007).

    Article  CAS  Google Scholar 

  22. S. Rubanov and P.R. Munroe: FIB-induced damage in silicon. J. Microsc. 214, 213 (2004).

    Article  CAS  Google Scholar 

  23. R. Soler, J.M. Molina-Aldareguia, J. Segurado, J. Llorca, R.I. Merino, and V.M. Orera: Micropillar compression of LiF [111] single crystals: Effect of size, ion irradiation and misorientation. Int. J. Plast. 36, 50 (2012).

    Article  CAS  Google Scholar 

  24. A. Zhilyaev and T. Langdon: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53(6), 893 (2008).

    Article  CAS  Google Scholar 

  25. D. Kiener, C. Motz, and G. Dehm: Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng., A 505(1–2), 79 (2009).

    Article  CAS  Google Scholar 

  26. N. Li, N.A. Mara, Y.Q. Wang, M. Nastasi, and A. Misra: Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles. Scr. Mater 64(10), 974 (2011).

    Article  CAS  Google Scholar 

  27. S. Lotfian, J.M. Molina-Aldareguia, K.E. Yazzie, J. Llorca, and N. Chawla: High-temperature nanoindentation behavior of Al/SiC multilayers. Philos. Mag. Lett. 92(8), 362 (2012).

    Article  CAS  Google Scholar 

  28. M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39(1), 361 (2009).

    Article  CAS  Google Scholar 

  29. J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6), 654 (2011).

    Article  CAS  Google Scholar 

  30. J.R. Greer, W.C. Oliver, and W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53(6), 1821 (2005).

    Article  CAS  Google Scholar 

  31. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1565 (1992).

    Article  Google Scholar 

  32. L.M. Pavlova, Y.I. Shtern, and R.E. Mironov: Thermal expansion of bismuth telluride. High Temp. 49(3), 369 (2011).

    Article  CAS  Google Scholar 

  33. H. Hans Landolt, R. Börnstein, K.H. Hellwege, R. Clasen, M. Schulz, H. Weiss, and O. Madelung: Numerical Data and Functional Relationships in Science and Technology. Group 3, Crystal and Solid State Physics. Vol. 17, Semiconductors, Springer: Berlin, 1983.

    Google Scholar 

  34. K.E. Spear: Diamond-ceramic coating of the future. J. Am. Ceram. Soc. 72(2), 171 (1989).

    Article  CAS  Google Scholar 

  35. T. Zühlke: Thermomechanical and microstructural properties of ZnCuTi under different deformation conditions. Ph.D. Thesis, Tecnun. Universidad de Navarra, 2014.

  36. B. Srinivasarao, A.P. Zhilyaev, T.G. Langdon, and M.T. Pérez-Prado: On the relation between the microstructure and the mechanical behavior of pure Zn processed by high pressure torsion. Mater. Sci. Eng., A 562, 196 (2013).

    Article  CAS  Google Scholar 

  37. I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  38. H. Zhang, B.E. Schuster, Q. Wei, and K.T. Ramesh: The design of accurate micro-compression experiments. Scr. Mater. 54(2), 181 (2006).

    Article  CAS  Google Scholar 

  39. E. Lilleodden: Microcompression study of Mg (0 0 0 1) single crystal. Scr. Mater. 62(8), 532 (2010).

    Article  CAS  Google Scholar 

  40. E.W. Kelley and W.F. Hosford: Plane-strain compression of magnesium and magnesium alloy crystals. Trans. Metall. Soc. AIME 242, 5 (1968).

    CAS  Google Scholar 

  41. L-D. Zhao, B-P. Zhang, J-F. Li, M. Zhou, W-S. Liu, and J. Liu: Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloys Compd. 455(1–2), 259 (2008).

    Article  CAS  Google Scholar 

  42. H. Kim and S. Hong: Compound prepared by high energy milling and hot extrusion. Curr. Nanosci. 10, 118 (2014).

    Article  CAS  Google Scholar 

  43. K. Niihara, R. Morena, and O. Metals: Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13, (1982).

    Article  CAS  Google Scholar 

  44. J.E. Ni, E.D. Case, K.N. Khabir, R.C. Stewart, C-I. Wu, T.P. Hogan, E.J. Timm, S.N. Girard, and M.G. Kanatzidis: Room temperature Young’s modulus, shear modulus, Poisson’s ratio and hardness of PbTe–PbS thermoelectric materials. Mater. Sci. Eng., B 170(1–3), 58 (2010).

    Article  CAS  Google Scholar 

  45. J. Eilertsen, M.A. Subramanian, and J.J. Kruzic: Fracture toughness of Co4Sb12 and In0.1Co4Sb12 thermoelectric skutterudites evaluated by three methods. J. Alloys Compd. 552, 492 (2013).

    Article  CAS  Google Scholar 

  46. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998).

    Article  CAS  Google Scholar 

  47. J. Alkorta, J.M. Martínez-Esnaola, and J. Gil Sevillano: Detailed assessment of indentation size-effect in recrystallized and highly deformed niobium. Acta Mater. 54, 3445–3452 (2006).

    Article  CAS  Google Scholar 

  48. L. Yang, J.S. Wu, and L.T. Zhang: Synthesis of filled skutterudite compound La0.75Fe3CoSb12 by spark plasma sintering and effect of porosity on thermoelectric properties. J. Alloys Compd. 364(1–2), 83 (2004).

    Article  CAS  Google Scholar 

  49. H. Julian Goldsmith: Introduction to Thermoelectricity (Springer-Verlag, London, New York, 2010).

    Book  Google Scholar 

  50. W. Xie, S. Wang, S. Zhu, J. He, X. Tang, Q. Zhang, and T.M. Tritt: High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering. J. Mater. Sci. 48(7), 2745 (2012).

    Article  CAS  Google Scholar 

  51. J.M. Schultz, J.P. McHugh, and W.A. Tiller: Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J. Appl. Phys. 33(8), 2443 (1962).

    Article  CAS  Google Scholar 

  52. J. Navrátil, Z. Starý, and T. Plechácek: Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater. Res. Bull. 31(12), 1559 (1996).

    Article  Google Scholar 

  53. L. Hu, T. Zhu, X. Liu, and X. Zhao: Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv. Funct. Mater. 24, 5211 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial assistance from the Spanish Ministry of Industry, Energy and Competitiveness (MINECO) under the project MAT2010-17958, from the Basque Government, Dept. of Education, action EC2013-06 and from BELSPO, under the Belgian Federal Interuniversity Attraction Poles Program, INTEMATE project, IAP P7/21 is gratefully acknowledged. JAS acknowledges support from MINECO through an FPI grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Ander Santamaría.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santamaría, J.A., Alkorta, J. & Sevillano, J.G. Microcompression tests of single-crystalline and ultrafine grain Bi2Te3 thermoelectric material. Journal of Materials Research 30, 2593–2604 (2015). https://doi.org/10.1557/jmr.2015.170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.170

Navigation