Skip to main content
Log in

Engineering thermal transport in SiGe-based nanostructures for thermoelectric applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thermoelectric converters based on silicon nanostructures offer exciting opportunities for higher efficiency, lower cost, ease of manufacturing, and integration into circuits. This paper considers phonon transport in a broad range of nanostructured materials made from Si, Ge, and their alloys. Our model based on the phonon Boltzmann transport equation captures the lattice thermal transport in silicon–germanium (SiGe) nanostructures, including thin films, superlattices (SLs), and nanocomposites. In nanocomposites, the model captures the grain structure using a Voronoi tessellation to mimic the grains and their size distribution. Our results show thermal conductivity in SiGe nanostructures below their bulk counterparts and reaching almost to the amorphous limit of thermal conductivity. We also demonstrate that thermal transport in SiGe nanostructures is tuneable by sample size (thin films), period thickness (SLs), and grain size (nanocomposites) through boundary scattering. Our results are relevant to the design of nanostructured SiGe alloys for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).

    Article  CAS  Google Scholar 

  2. F.J. DiSalvo: Thermoelectric cooling and power generation. Science 285, 703–706 (1999).

    Article  CAS  Google Scholar 

  3. C.J. Glassbrenner and G.A. Slack: Thermal conductivity of silicon and germanium from 3k to the melting point. Phys. Rev. 134, A1058–A1069 (1964).

    Article  Google Scholar 

  4. P.D. Maycock: Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys. Solid-State Electron. 10, 161–168 (1967).

    Article  CAS  Google Scholar 

  5. C.N. Liao, C. Chen, and K.N. Tu: Thermoelectric characterization of Si thin films in silicon-on-insulator wafers. J. Appl. Phys. 86, 3204–3208 (1999).

    Article  CAS  Google Scholar 

  6. C.B. Vining: An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83–85 (2009).

    Article  CAS  Google Scholar 

  7. C. Bera, M. Soulier, C. Navone, G. Roux, J. Simon, S. Volz, and N. Mingo: Thermoelectric properties of nanostructured Si1−xGex and potential for further improvement. J. Appl. Phys. 108, 124306 (2010).

    Article  CAS  Google Scholar 

  8. G. Jeffrey Snyder and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  9. L.D. Hicks and M.S. Dresselhaus: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 (1993a).

    Article  CAS  Google Scholar 

  10. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J-P. Fleurial, and P. Gogna: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007).

    Article  CAS  Google Scholar 

  11. K.L. Wang, G. Chen, A. Khitun, and A. Balandin: Enhancement of the thermoelectric figure of merit of Si1−xGex quantum wires due to spatial confinement of acoustic phonons. Phys. E 8, 13–18 (2000).

    Article  Google Scholar 

  12. O.L. Lazarenkova and A.A. Balandin: Mechanisms for thermoelectric figure-of-merit enhancement in regimented quantom dot superlattices. Appl. Phys. Lett. 82, 415–417 (2003).

    Article  CAS  Google Scholar 

  13. L.D. Hicks and M.S. Dresselhaus: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631 (1993b).

    Article  CAS  Google Scholar 

  14. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z. Ren: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670–4674 (2008).

    Article  CAS  Google Scholar 

  15. A.J. Minnich, H. Lee, X.W. Wang, G. Joshi, M.S. Dresselhaus, Z.F. Ren, G. Chen, and D. Vashaee: Modeling study of thermoelectric SiGe nanocomposites. Phys. Rev. B 80, 155327 (2009).

    Article  CAS  Google Scholar 

  16. G.H. Zhu, H. Lee, Y.C. Lan, X.W. Wang, G. Joshi, D.Z. Wang, J. Yang, D. Vashaee, H. Guilbert, A. Pillitteri, M.S. Dresselhaus, G. Chen, and Z.F. Ren: Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Phys. Rev. Lett. 102, 196803 (2009).

    Article  CAS  Google Scholar 

  17. H.J. Ryu, Z. Aksamija, D.M. Paskiewicz, S.A. Scott, M.G. Lagally, I. Knezevic, and M.A. Eriksson: Quantitative determination of contributions to the thermoelectric power factor in si nanostructures. Phys. Rev. Lett. 105, 256601 (2010).

    Article  CAS  Google Scholar 

  18. Z. Aksamija and I. Knezevic: Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B 82, 045319 (2010).

    Article  CAS  Google Scholar 

  19. Z. Aksamija and I. Knezevic: Thermal conductivity of Si1−xGex/Si1−yGey superlattices: Competition between interfacial and internal scattering. Phys. Rev. B 88, 155318 (2013).

    Article  CAS  Google Scholar 

  20. Z. Aksamija: Lattice thermal transport in si-based nanocomposites for thermoelectric applications. J. Electron. Mater. 441–7 (2014).

    Google Scholar 

  21. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, and L. Shi: Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).

    Article  CAS  Google Scholar 

  22. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. Phillipot: Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).

    Article  CAS  Google Scholar 

  23. P. Carruthers: Theory of thermal conductivity of solids at low temperatures. Rev. Mod. Phys. 33, 92 (1961).

    Article  CAS  Google Scholar 

  24. D.T. Morelli, J.P. Heremans, and G.A. Slack: Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Phys. Rev. B 66, 195304 (2002).

    Article  CAS  Google Scholar 

  25. A. Ward and D.A. Broido: Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010).

    Article  CAS  Google Scholar 

  26. K. Esfarjani, G. Chen, and H.T. Stokes: Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011).

    Article  CAS  Google Scholar 

  27. S-I. Tamura: Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 27, 858–866 (1983).

    Article  CAS  Google Scholar 

  28. H.J. Maris: Phonon propagation with isotope scattering and spontaneous anharmonic decay. Phys. Rev. B 41, 9736–9743 (1990).

    Article  CAS  Google Scholar 

  29. J. Garg, N. Bonini, B. Kozinsky, and N. Marzari: Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: A first-principles study. Phys. Rev. Lett. 106, 045901 (2011).

    Article  CAS  Google Scholar 

  30. G. Gilat and L.J. Raubenheimer: Accurate numerical method for calculating frequency-distribution functions in solids. Phys. Rev. 144, 390–395 (1966).

    Article  CAS  Google Scholar 

  31. B. Abeles, D.S. Beers, G.D. Cody, and J.P. Dismukes: Thermal conductivity of Ge-Si alloys at high temperatures. Phys. Rev. 125, 44–46 (1962).

    Article  CAS  Google Scholar 

  32. M.M. Rieger and P. Vogl: Electronic-band parameters in strained Si1−xGex and Si1−yGey substrates. Phys. Rev. B 48, 14276–14287 (1993).

    Article  CAS  Google Scholar 

  33. B. Abeles: Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 131, 1906–1911 (1963).

    Article  Google Scholar 

  34. P.G. Klemens: Thermal resistance due to point defects at high temperatures. Phys. Rev. 119, 507–509 (1960).

    Article  CAS  Google Scholar 

  35. G. Slack: Solid State Physics, Vol. 34, F. Seitz, H. Ehrenreich, and D. Turnbull eds.; Academic Press: New York, NY, 1979.

    Google Scholar 

  36. J.E. Turney, A.J.H. McGaughey, and C.H. Amon: In-plane phonon transport in thin films. J. Appl. Phys. 107, 024317 (2010).

    Article  CAS  Google Scholar 

  37. E.H. Sondheimer: The mean free path of electrons in metals. Adv. Phys. 1, 1–42 (1952).

    Article  Google Scholar 

  38. R. Cheaito, J.C. Duda, T.E. Beechem, K. Hattar, J.F. Ihlefeld, D.L. Medlin, M.A. Rodriguez, M.J. Campion, E.S. Piekos, and P.E. Hopkins: Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films. Phys. Rev. Lett. 109, 195901 (2012).

    Article  CAS  Google Scholar 

  39. W. Liu and A.A. Balandin: Thermal conduction in AlxGa1−xN alloys and thin films. J. Appl. Phys. 97, 073710 (2005).

    Article  CAS  Google Scholar 

  40. D.G. Cahill, S.K. Watson, and R.O. Pohl: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).

    Article  CAS  Google Scholar 

  41. J.P. Feser, E.M. Chan, A. Majumdar, R.A. Segalman, and J.J. Urban: Ultralow thermal conductivity in polycrystalline cdse thin films with controlled grain size. Nano Lett. 13, 2122–2127 (2013).

    Article  CAS  Google Scholar 

  42. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  43. S.T. Huxtable, A.R. Abramson, C-L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J.E. Bowers, A. Shakouri, and E.T. Croke: Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices. Appl. Phys. Lett. 80, 1737–1739 (2002).

    Article  CAS  Google Scholar 

  44. P. Hyldgaard and G.D. Mahan: Phonon superlattice transport. Phys. Rev. B 56, 10754–10757 (1997).

    Article  CAS  Google Scholar 

  45. G. Chen: Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998).

    Article  CAS  Google Scholar 

  46. M.V. Simkin and G.D. Mahan: Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927–930 (2000).

    Article  CAS  Google Scholar 

  47. B. Yang and G. Chen: Lattice dynamics study of anisotropic heat conduction in superlattices. Microscale Thermophys. Eng. 5, 107–116 (2001).

    Article  CAS  Google Scholar 

  48. P. Martin, Z. Aksamija, E. Pop, and U. Ravaioli: Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 102, 125503 (2009).

    Article  CAS  Google Scholar 

  49. J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kudman, and D.S. Beers: Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300[degree]k. J. Appl. Phys. 35, 2899–2907 (1964).

    Article  CAS  Google Scholar 

  50. P.G. Klemens: Solid State Physics (Academic Press, NY, 1958).

    Google Scholar 

  51. M-H. Bae, Z. Li, Z. Aksamija, P.N. Martin, F. Xiong, Z-Y. Ong, I. Knezevic, and E. Pop: Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat. Commun. 4, 1734 (2013).

    Article  Google Scholar 

  52. W. Weber: Adiabatic bond charge model for the phonons in diamond, Si, Ge, and α−Sn. Phys. Rev. B 15, 4789 (1977).

    Article  CAS  Google Scholar 

  53. K.C. Rustagi and W. Weber: Adiabatic bond charge model for the phonons in A3B5 semiconductors. Solid State Commun. 18, 673–675 (1976).

    Article  CAS  Google Scholar 

  54. D. Strauch and B. Dorner: Phonon dispersion in GaAs. J. Phys.: Condens. Matter 2, 1457–1474 (1990).

    CAS  Google Scholar 

  55. B.D. Rajput and D.A. Browne: Lattice dynamics of II-VI materials using the adiabatic bond-charge model. Phys. Rev. B 53, 9052–9058 (1996).

    Article  CAS  Google Scholar 

  56. A. Khitun, A. Balandin, J.L. Liu, and K.L. Wang: In-plane lattice thermal conductivity of a quantum-dot superlattice. J. Appl. Phys. 88, 13–18 (2000).

    Article  Google Scholar 

  57. J.L. Liu, K.L. Wang, A. Khitun, and A. Balandin: The effect of the long-range order in a quantum dot array on the in-plane lattice thermal conductivity. Superlattices Microstruct. 30, 415–417 (2001).

    Google Scholar 

  58. Z. Aksamija and U. Ravaioli: Anharmonic decay of g-process longitudinal optical phonons in silicon. Appl. Phys. Lett. 96, 091911 (2010).

    Article  CAS  Google Scholar 

  59. M. Shamsa, W. Liu, A.A. Balandin, and J. Liu: Phonon-hopping thermal conduction in quantum dot superlattices. Appl. Phys. Lett. 87, 202105 (2005).

    Article  CAS  Google Scholar 

  60. M. Shamsa, K. Alim, A.A. Balandin, Y. Bao, W.L. Liu, and J.L. Liub: Electrical and thermal conductivity of Ge/Si quantum dot superlattices. J. Electrochem. Soc. 152, 6432–6435 (2005).

    Google Scholar 

  61. Y. Lan, A. Jerome Minnich, G. Chen, and Z. Ren: Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357–376 (2010).

    Article  CAS  Google Scholar 

  62. Z. Wang and N. Mingo: Absence of casimir regime in two-dimensional nanoribbon phonon conduction. Appl. Phys. Lett. 99, 101903 (2011).

    Article  CAS  Google Scholar 

  63. L. Braginsky, N. Lukzen, V. Shklover, and H. Hofmann: High-temperature phonon thermal conductivity of nanostructures. Phys. Rev. B 66, 134203 (2002).

    Article  CAS  Google Scholar 

  64. M. Zebarjadi, K. Esfarjani, Z. Bian, and A. Shakouri: Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution. Nano Lett. 11, 225–230 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatan Aksamija.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyaya, M., Khatami, S.N. & Aksamija, Z. Engineering thermal transport in SiGe-based nanostructures for thermoelectric applications. Journal of Materials Research 30, 2649–2662 (2015). https://doi.org/10.1557/jmr.2015.202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.202

Navigation