Skip to main content

Advertisement

Log in

Grain growth resistant nanocrystalline zirconia by targeting zero grain boundary energies

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline ceramics offer interesting and useful physical properties attributed to their inherent large volume fraction of grain boundaries. At the same time, these materials are highly unstable, being subjected to severe coarsening when exposed at moderate to high temperatures, limiting operating temperatures and disabling processing conditions. In this work, we designed highly stable nanocrystalline yttria stabilized zirconia (YSZ) by targeting a decrease of average grain boundary (GB) energy, affecting both driving force for growth and mobility of the boundaries. The design was based on fundamental equations governing thermodynamics of nanocrystals, and enabled the selection of lanthanum as an effective dopant which segregates to grain boundaries and lowers the average energy of YSZ boundaries to half. While this would be already responsible for significant coarsening reduction, we further experimentally demonstrate that the GB energy decreases continuously during grain growth caused by the enrichment of boundaries with dopant, enhancing further the stability of the boundaries. The designed composition showed impressive resistance to grain growth at 1100 °C as compared to the undoped YSZ and opens the perspective for similar design in other ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. N.J. Petch: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  2. C.M. Wang, J. Cho, H.M. Chan, M.P. Harmer, and J.M. Rickman: Influence of dopant concentration on creep properties of Nd2O3-doped alumina. J. Am. Ceram. Soc. 84, 1010 (2001).

    Article  CAS  Google Scholar 

  3. J.A. Wollmershauser, B.N. Feigelson, E.P. Gorzkowski, C.T. Elis, R. Goswami, S.B. Qadri, J.G. Tischler, F.J. Kub, and R.K. Everett: An extended hardness limit in bulk nanoceramics. Acta Mater. 69, 9 (2014).

    Article  CAS  Google Scholar 

  4. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  5. D. Ehre and R. Chaim: Abnormal Hall–Petch behavior in nanocrystalline MgO ceramic. J. Mater. Sci. 43, 6139 (2008).

    Article  CAS  Google Scholar 

  6. F. Maglia, I.G. Tredici, and U. Anselmi-Tamburini: Densification and properties of bulk nanocrystalline functional ceramics with grain size below 50 nm. J. Eur. Ceram. Soc. 33, 1045 (2013).

    Article  CAS  Google Scholar 

  7. J. Burke: Some factors affecting the rate of grain growth in metals. AIME Trans. 180, 73 (1949).

    Google Scholar 

  8. F. Liu and R. Kirchheim: Nano-scale grain growth inhibited by reducing GB energy through solute segregation. J. Crystal Growth 264, 385 (2004).

    Article  CAS  Google Scholar 

  9. M. Gong and F. Liu: Nano-scaled grain growth. In Mechanism of Conventional Nanodensification and Field Assisted Processes, R.H.R. Castro and K. van Benthem eds.; Springer-Verlag: Germany, 2013; pp. 35–55.

    Google Scholar 

  10. G. Gottstein and L.S. Shvindlerman: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (CRC Press, Boca Raton, FL, 1999); pp. 254–311.

    Google Scholar 

  11. V.T. Borisov, V.M. Golikov, and G.V. Shcherbedinskii: The relationship between diffusion coefficients and grain-boundary energy. Fiz. Met. Metalloved. 885, 17 (1964).

    Google Scholar 

  12. Z. Chen, F. Liu, X.Q. Yang, and C.J. Shen: A thermokinetic description of nanoscale grain growth: Analysis of the activation energy effect. Acta Mater. 60, 4833 (2012).

    Article  CAS  Google Scholar 

  13. M.N. Rahaman: Sintering of Ceramics (CRC Press, Boca Raton, FL, 2007); pp. 140–143.

    Book  Google Scholar 

  14. P.L. Chen and I.W. Chen: Grain boundary mobility in Y2O3: Defect mechanism and dopant effects. J. Am. Ceram. Soc. 79, 1801 (1996).

    Article  CAS  Google Scholar 

  15. P.L. Chen and I.W. Chen: Grain growth in CeO2: Dopant effects, defect mechanism, and solute drag. J. Am. Ceram. Soc. 79, 1793 (1996).

    Article  CAS  Google Scholar 

  16. R.H.R. Castro: On the thermodynamic stability of nanocrystalline ceramics. Mater. Lett. 96, 45 (2013).

    Article  CAS  Google Scholar 

  17. J. Weissmüller: Alloy effects in nanostructures. Nanostruct. Mater. 3, 261 (1993).

    Article  Google Scholar 

  18. R. Cahn: Nanostability. Mater. Today 4, 13 (2008).

    Google Scholar 

  19. D. Gouvea, G.J. Pereira, L. Gengembre, M.C. Steil, P. Roussel, A. Rubbens, P. Hidalgo, and R.H.R. Castro: Quantification of MgO surface excess on the SnO2 nanoparticles and relationship with nanostability and growth. Appl. Surf. Sci. 257, 4219 (2011).

    Article  CAS  Google Scholar 

  20. T. Chookajorn, J.A. Murdoch, and C.A. Schuh: Design of stable nanocrystalline alloys. Science 337, 951 (2012).

    Article  CAS  Google Scholar 

  21. P.C. Millett, R.P. Selvam, and A. Saxena: Stabilizing nanocrystalline materials with dopants. Acta Mater. 55, 2329 (2007).

    Article  CAS  Google Scholar 

  22. P.C. Millett, R.P. Selvam, and A. Saxena: Molecular dynamics simulation of grain size stabilization in nanocrystalline materials by addition of dopants. Acta Mater. 54, 297 (2006).

    Article  CAS  Google Scholar 

  23. P.C. Millett, R.P. Selvam, S. Bansal, and A. Saxena: Atomistic simulation of grain boundary energetics—Effects of dopants. Acta Mater. 53, 3671 (2005).

    Article  CAS  Google Scholar 

  24. R. Kirchheim: Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413 (2002).

    Article  CAS  Google Scholar 

  25. F. Liu and R. Kirchheim: Grain boundary saturation and grain growth. Scr. Mater. 51, 521 (2004).

    Article  CAS  Google Scholar 

  26. J.R. Trelewicz and C. Schuh: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B. 79, 094112 (2009).

    Article  CAS  Google Scholar 

  27. M.M. Gong, F. Liu, and K. Zhang: Thermokinetic description of nanoscale grain growth: Analysis of initial grain boundary excess amount. Scr. Mater. 63, 898 (2010).

    Google Scholar 

  28. J. Jain, G. Rao, N. Kishore, and H. Jain: Zirconia-based solid state electrolyte sensor. Res. Ind. 35, 23 (1990).

    CAS  Google Scholar 

  29. W.C. Maskell: Progress in the development of zirconia gas sensors. Solid State Ionics 134, 43 (2000).

    Article  CAS  Google Scholar 

  30. Y. Lei, Y. Ito, N.D. Browning, and T.J. Mazanec: Segregation effects at grain boundaries in fluorite-strctured ceramics. J. Am. Ceram. Soc. 85, 2359 (2002).

    Article  CAS  Google Scholar 

  31. E.C. Dickey, X. Fan, and S.J. Pennycook: Structure and chemistry of yttria-stabilized cubic-zirconia symmetric tilt grain boundaries. J. Am. Ceram. Soc. 84, 1361 (2001).

    Article  CAS  Google Scholar 

  32. K. Matsui, N. Ohmichi, M. Ohgai, H. Yoshida, and Y. Ikuhara: Effect of alumina-doping on grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal. J. Mater. Res. 21, 2278 (2006).

    Article  CAS  Google Scholar 

  33. M. Backhaus-Ricoult, M. Badding, and Y. Thibault: Grain boundary segregation and conductivity in yttria-stabilized zirconia. In Advances in Electronic and Electrochemical Ceramics, Vol. 179, F. Dogan and P. Kumta, eds.; John Wiley & Sons, Inc.: Danvers, MA, 2006; pp. 2–19.

    Google Scholar 

  34. S.L. Hwang and I.W. Chen: Grain size control of tetragonal zirconia polycrystals using the space charge concept. J. Am. Ceram. Soc. 73, 3269 (1990).

    Article  CAS  Google Scholar 

  35. S-K.L. Kang: Sintering Densification, Grain Growth and Microstructure, 1st ed. (Elsevier Butterworth-Heinemann, Burlington, MA, USA, 2005); pp. 171–191.

    Google Scholar 

  36. W. Lee, J.W. Han, Y. Chen, Z. Cai, and B. Yildiz: Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 7909 (2013).

    Article  CAS  Google Scholar 

  37. Z.A. Munir, D. Quach, and M. Ohyanagi: Electric current activation of sintering: A review of the pulsed electric current sintering process. J. Am. Ceram. Soc. 94, 1 (2011).

    Article  CAS  Google Scholar 

  38. D.V. Quach, A. Zavaliangos, and U. Anselmi-Tambtirini, and J.R. Groza: Fundamentals and applications of field/current assisted sintering. In Sintering of Advanced Materials, Z. Fang ed.; Woodhead Publishing Ltd.: USA, 2010; pp 249–274.

    Chapter  Google Scholar 

  39. J. Rufner, D. Anderson, K. van Benthem, and R.H.R. Castro: Synthesis and sintering behavior of ultrafine (< 10 nm) magnesium aluminate spinel nanoparticles. J. Am. Ceram. Soc. 96, 2077 (2013).

    Article  CAS  Google Scholar 

  40. D.V. Quach and R.H.R. Castro: Direct measurement of GB enthalpy of cubic yttria-stabilized zirconia by differential scanning calorimetry. J. Appl. Phys. 112, 083527 (2012).

    Article  CAS  Google Scholar 

  41. L. Wu, S. Dey, M. Gong, F. Liu, and R.H.R. Castro: Surface segregation on manganese doped ceria nanoparticles and relationship with nanostability. J. Phys. Chem. C 118, 30187 (2014).

    Article  CAS  Google Scholar 

  42. H.K. Kissinger: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957).

    Article  CAS  Google Scholar 

  43. L.C. Chen and F. Spaepen: Analysis of calorimetric measurements of grain growth. J. Appl. Phys. 69, 679 (1991).

    Article  CAS  Google Scholar 

  44. J. Li, Q. Fang, and Y. Liu: Void formation of nanocrystalline materials at the triple junction of grain boundaries. Mater. Res. Express 1, 015013 (2014).

    Article  CAS  Google Scholar 

  45. Y. Ma and T.G. Langdon: An examination of the implications of void growth in submicrometer and nanocrystalline structures. Mater. Sci. Eng., A 168, 225 (1993).

    Article  Google Scholar 

  46. G.C.C. Costa, S.V. Ushakov, R.H.R. Castro, A. Navrotsky, and R. Muccillo: Calorimetric measurement of surface and interface enthalpies of yttria-stabilized zirconia (YSZ). Chem. Mater. 22, 2937 (2010).

    Article  CAS  Google Scholar 

  47. R.F. Egerton: Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd ed. (Plenum Press, New York, 1996); pp. 231–288.

    Book  Google Scholar 

  48. D. McLean: Grain Boundaries in Metals (Clarendon Press, 1957); p. 44.

    Google Scholar 

  49. Z. Chen, F. Liu, X.Q. Yang, C.J. Shen, and W.M. Zhao: A thermokinetic description of nano-scale grain growth under dynamic grain boundary segregation condition. J. Alloys Compd. 608, 338 (2014).

    Article  CAS  Google Scholar 

  50. G.S. Rohrer: Measuring and interpreting the structure of grain-boundary networks. J. Am. Ceram. Soc. 94, 633 (2011).

    Article  CAS  Google Scholar 

  51. H. Taimatsul, K. Wada, H. Kaneko, and H. Yamamura: Mechanism of reaction between lanthanum manganite and yttria-stabilized zirconia. J. Am. Ceram. Soc. 75, 401 (1992).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

Research supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award # ER46795, Early Career Program Award (spark plasma sintering, S.D., R.C.); National Science Foundation (NSF) under Award # DMR Ceramics 1055504, CAREER Award (calorimetry and grain growth, C-H.C., R.C.); University of California LabFee Program under Award # 12-LF-239032 (microscopy, S.D.). F.L. and M.G. are grateful to the Natural Science Foundation of China (# 51134011 and 51431008), and China National Funds for Distinguished Young Scientists (# 51125002). Dat Quach is greatly acknowledged for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo H. R. Castro.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Chang, CH., Gong, M. et al. Grain growth resistant nanocrystalline zirconia by targeting zero grain boundary energies. Journal of Materials Research 30, 2991–3002 (2015). https://doi.org/10.1557/jmr.2015.269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.269

Navigation