Skip to main content
Log in

Kerfless exfoliated thin crystalline Si wafers with Al metallization layers for solar cells

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report on a kerfless exfoliation approach to further reduce the costs of crystalline silicon photovoltaics making use of evaporated Al as a double functional layer. The Al serves as the stress inducing element to drive the exfoliation process and can be maintained as a rear contacting layer in the solar cell after exfoliation. The 50–70 µm thick exfoliated Si layers show effective minority carrier lifetimes around 180 µs with diffusion lengths of 10 times the layer thickness. We analyze the thermo-mechanical properties of the Al layer by x-ray diffraction analysis and investigate its influence on the exfoliation process. We evaluate the approach for the implementation into solar cell production by determining processing limits and estimating cost advantages of a possible solar cell design route. The Al–Si bilayers are mechanically stable under processing conditions and exhibit a moderate cost savings potential of 3–36% compared to other c-Si cell concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. International Technology Roadmap for Photovoltaic (ITRPV) (SEMI PV GROUP, Berlin, Germany, 2015) www.itrpv.net (accessed May 25, 2015).

  2. C. Yisng: Energy Trend PV (2014) http://pv.energytrend.com/price/20140103-6007.html (accessed January 7, 2014).

  3. M. Bruel: Silicon on insulator material technology. Electron. Lett. 31 (14), 1201 (1995).

    Article  CAS  Google Scholar 

  4. F. Henley, S. Kang, Z. Liu, L. Tian, J. Wang, and Y-L. Chow: Beam-induced wafering technology for kerf-free thin PV manufacturing. Presented at the 34th IEEE Photovoltaic Specialists Conference, Philadelphia, 2009; p. 1718.

  5. R. Brendel and M. Ernst: Macroporous Si as an absorber for thin-film solar cells. Phys. Status Solidi RRL 4 (1–2), 40 (2010).

    Article  CAS  Google Scholar 

  6. R. Brendel: A novel process for ultrathin monocrystalline silicon solar cells on glass. Presented at the 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 1997; p. 1354.

  7. G.J. Hayes and B.M. Clemens: Rapid lift-off of epitaxial thin films. J. Mater. Res. 28 (18), 2564 (2013).

    Article  CAS  Google Scholar 

  8. M. Tanielian, S. Blackstone, and R. Lajos: A new technique of forming thin free standing single-crystal films. J. Electrochem. Soc. 132 (2), 508 (1985).

    Article  Google Scholar 

  9. F. Dross, J. Robbelein, B. Vandevelde, E. van Kerschaver, I. Gordon, G. Beaucarne, and J. Poortmans: Stress-induced large-area lift-off of crystalline Si films. Appl. Phys. A 89 (1), 149 (2007).

    Article  CAS  Google Scholar 

  10. S.W. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P. Lauro, J.A. Ott, N.E. Sosa Cortes, and D. Sadana: Kerf-less removal of Si, Ge, and III–V layers by controlled spalling to enable low-cost PV technologies. IEEE J. Photovoltaics 2 (2), 141 (2012).

    Article  Google Scholar 

  11. S.W. Bedell, K. Fogel, P. Lauro, D. Shahrjerdi, J.A. Ott, and D. Sadana: Layer transfer by controlled spalling. J. Phys. D: Appl. Phys. 46 (15), 152002 (2013).

    Article  Google Scholar 

  12. R.A. Rao, L. Mathew, S. Saha, S. Smith, D. Sarkar, R. Garcia, R. Stout, and A. Gurmu: A novel low cost 25 µm thin exfoliated monocrystalline Si solar cell technology. Presented at the 37th IEEE Photovoltaic Specialists Conference, Seattle, 2011; p. 1504.

  13. Y. Kwon, C. Yang, S-H. Yoon, H-D. Um, J-H. Lee, and B. Yoo: Spalling of a thin Si layer by electrodeposit-assisted stripping. Appl. Phys. Express 6 (11), 116502 (2013).

    Article  Google Scholar 

  14. Z. Suo and J.W. Hutchinson: Steady-state cracking in brittle substrates beneath adherent films. Int. J. Solids Struct. 25 (11), 1337 (1989).

    Article  Google Scholar 

  15. R.A. Rao, L. Mathew, D. Sarkar, S. Smith, S. Saha, R. Garcia, R. Stout, A. Gurmu, and M. Ainom: A low cost kerfless thin crystalline Si solar cell technology. Presented at the 38th IEEE Photovoltaic Specialists Conference, Austin, 2012; p. 1837.

  16. A. Masolin, E. Simoen, J. Kepa, and A. Stesmans: Defects in Si foils fabricated by spalling at low temperature: Electrical activity and atomic nature. J. Phys. D: Appl. Phys. 46 (15), 155501 (2013).

    Article  Google Scholar 

  17. R. Martini, J. Kepa, M. Debucquoy, V. Depauw, M. Gonzalez, I. Gordon, A. Stesmans, and J. Poortmans: Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells. Appl. Phys. Lett. 105 (17), 173906 (2014).

    Article  Google Scholar 

  18. R.A. Sinton: Quasi-steady-state photoconductance, a new method for solar cell material and device characterization. Presented at the 25th IEEE Photovoltaic Specialists Conference, Washington, D.C., 1996; p. 457.

  19. S. Saha, M.M. Hilali, E.U. Onyegam, D. Sarkar, D. Jawarani, R.A. Rao, L. Mathew, R.S. Smith, D. Xu, U.K. Das, B. Sopori, and S.K. Banerjee: Single heterojunction solar cells on exfoliated flexible ∼25 µm thick mono-crystalline silicon substrates. Appl. Phys. Lett. 102 (16), 163904 (2013).

    Article  Google Scholar 

  20. S. Schönfelder, O. Breitenstein, S. Rissland, R. de Donno, and J. Bagdahn: Glue-cleave: Kerfless wafering for silicon wafers with metal gluing and removable interface. In Proceedings of the 22nd Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, B. Sopori and R. Sinton ed.; Golden: Vail, CO, 2012; p. 208.

    Google Scholar 

  21. P. Bellanger, M.C. Brito, D. Pera, I. Costa, G. Gaspar, R. Martini, M. Debucquoy, and J.M. Serra: New stress activation method for kerfless silicon wafering using Ag/Al and epoxy stress-inducing layers. IEEE J. Photovoltaics 4 (5), 1228 (2014).

    Article  Google Scholar 

  22. J.E. Hatch: Aluminum: Properties and Physical Metallurgy (ASM International, Russel, OH, 1984); p. 6.

    Google Scholar 

  23. A. Masolin, P-O. Bouchard, R. Martini, and M. Bernacki: Thermo-mechanical and fracture properties in single-crystal silicon. J. Mater. Sci. 48 (3), 979 (2013).

    Article  CAS  Google Scholar 

  24. J. Hensen, R. Niepelt, S. Kajari-Schroder, and R. Brendel: Directional heating and cooling for controlled spalling. IEEE J. Photovoltaics 5 (1), 195 (2015).

    Article  Google Scholar 

  25. F. Heinemeyer, C. Mader, D. Münster, T. Dullweber, N.P. Harder, and R. Brendel: In-line high-rate thermal evaporation of aluminium as a novel industrial solar cell metallization scheme. In Proceedings of the 2nd Workshop on Metallization for Crystalline Silicon Solar Cells, J. Hoornsta, G. Schubert, and G. Beaucarne ed.; University of Konstanz: Konstanz, Germany, 2010; p. 48.

    Google Scholar 

  26. R. Niepelt, J. Hensen, A. Knorr, V. Steckenreiter, S. Kajari-Schröder, and R. Brendel: High-quality exfoliated crystalline silicon foils for solar cell applications. Energy Procedia 55, 570 (2014).

    Article  CAS  Google Scholar 

  27. S. Kajari-Schröder, J. Hensen, R. Niepelt, and R. Brendel: Kerfless wafering by mechanically induced spallation—Observation of the process evolution with digital image correlation. Presented at the 6th World Conference on Photovoltaic Energy Conversion, Kyoto, Japan, 2014; p. J1ThO.7.3.

  28. K. Ramspeck, K. Bothe, J. Schmidt, and R. Brendel: Combined dynamic and steady-state infrared camera based carrier lifetime imaging of silicon wafers. J. Appl. Phys. 106 (11), 114506 (2009).

    Article  Google Scholar 

  29. H. Schlangenotto, H. Maeder, and W. Gerlach: Temperature dependence of the radiative recombination coefficient in silicon. Phys. Status Solidi A 21 (1), 357 (1974).

    Article  CAS  Google Scholar 

  30. A. Richter, S.W. Glunz, F. Werner, J. Schmidt, and A. Cuevas: Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 86 (16), 5202 (2012).

    Article  Google Scholar 

  31. E. Macherauch and P. Müller: Zur Eigenspannungsausbildung bei einer Al-Legierung und bei Reinstaluminium. Naturwissenschaften 44 (14), 389 (1957).

    Article  CAS  Google Scholar 

  32. J.M. Gere: Mechanics of Materials, 6th ed. (Brooks/Cole, Belmont, CA, 2004).

    Google Scholar 

  33. A.G. Evans and J.W. Hutchinson: The thermomechanical integrity of thin films and multilayers. Acta Metall. Mater. 43 (7), 2507 (1995).

    Article  CAS  Google Scholar 

  34. H. Shi, A.J. McLaren, C.M. Sellars, R. Shahani, and R. Bolingbroke: Constitutive equations for high temperature flow stress of aluminium alloys. Mater. Sci. Technol. 13, 210 (1997).

    Article  CAS  Google Scholar 

  35. M. Bauser, G. Sauer, and K. Siegert: Extrusion, 2nd ed. (ASM International, Russel, OH, 2006).

    Google Scholar 

  36. S. Bader, E.M. Kalaugher, and E. Arzt: Comparison of mechanical properties and microstructure of Al(1 wt.%Si) and Al(1 wt.%Si, 0.5 wt.%Cu) thin films. Thin Solid Films 263 (2), 175 (1995).

    Article  CAS  Google Scholar 

  37. M. Kerr, P. Campbell, and A. Cuevas: Lifetime and efficiency limits of crystalline silicon solar cells. Presented at the 29th IEEE Photovoltaic Specialists Conference, New Orleans, 2002; p. 438.

  38. A. Richter, M. Hermle, and S.W. Glunz: Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovoltaics 3 (4), 1184 (2013).

    Article  Google Scholar 

  39. R. Brendel, J.H. Petermann, D. Zielke, H. Schulte-Huxel, M. Kessler, S. Gatz, S. Eidelloth, R. Bock, E. Garralaga Rojas, J. Schmidt, and T. Dullweber: High-efficiency cells from layer transfer: A first step toward thin-film/wafer hybrid silicon technologies. IEEE J. Photovoltaics 1 (1), 9 (2011).

    Article  Google Scholar 

  40. J.H. Petermann, H. Schulte-Huxel, V. Steckenreiter, S. Kajari-Schroder, and R. Brendel: Principle of module-level processing demonstrated at single a-Si:H/c-Si heterojunction solar cells. IEEE J. Photovoltaics 4 (4), 1018 (2014).

    Article  Google Scholar 

  41. J. Govaerts, J. Robbelein, M. Gonzalez, I. Gordon, K. Baert, I. de Wolf, F. Bossuyt, S. van Put, and J. Vanfleteren: Developing an advanced module for back-contact solar cells. IEEE Trans. Compon., Packag., Manuf. Technol. 1 (3), 1319 (2011).

    Article  CAS  Google Scholar 

  42. J.C. Kim and S.K. Cheong: I–V curve characteristics of solar cells on composite substrate unsder mechanical loading. J. Mech. Sci. Technol. 28 (5), 1691 (2014).

    Article  Google Scholar 

  43. D. Xu, P.S. Ho, R.A. Rao, L. Mathew, S. Smith, S. Saha, D. Sarkar, C. Vass, and D. Jawarani: Mechanical strength and reliability of a novel thin monocrystalline silicon solar cell. Presented at the IEEE International Reliability Physics Symposium, Anaheim, 2012; p. 4A.3.1.

  44. V. Tvergaard and J.W. Hutchinson: Toughness of an interface along a thin ductile layer joining elastic solids. Philos. Mag. A 70 (4), 641 (1994).

    Article  CAS  Google Scholar 

  45. A. Volinsky, N. Moody, and W. Gerberich: Interfacial toughness measurements for thin films on substrates. Acta Mater. 50 (3), 441 (2002).

    Article  CAS  Google Scholar 

  46. Y. Wei and J.W. Hutchinson: Nonlinear delamination mechanics for thin films. J. Mech. Phys. Solids 45 (7), 1137 (1997).

    Article  CAS  Google Scholar 

  47. Y.Y. Hu and W.M. Huang: Elastic and elastic-plastic analysis of multilayer thin films: Closed-form solutions. J. Appl. Phys. 96 (8), 4154 (2004).

    Article  CAS  Google Scholar 

  48. A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T.L. James, and M. Woodhouse: A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs. Sol. Energy Mater. Sol. Cells 114, 110 (2013).

    Article  CAS  Google Scholar 

  49. P. Bellanger, P-O. Bouchard, M. Bernacki, and J. Serra: Room temperature thin foil SLIM-cut using an epoxy paste: Experimental versus theoretical results. Mater. Res. Express 2 (4), 046203 (2015).

    Article  Google Scholar 

  50. V. Steckenreiter, R. Horbelt, D.N. Wright, M. Nese, and R. Brendel: Qualification of encapsulation materials for module-level-processing. Sol. Energy Mater. Sol. Cells 120, 396–401 (2014).

    Article  CAS  Google Scholar 

  51. A. Masolin: Fabrication and characterization of ultra-thin silicon crystalline wafers for photovoltaic applications using a stress-induced lift-off method. Ph.D. Thesis, KU Leuven, Faculty of Engineering, Leuven, BE, 2012.

Download references

ACKNOWLEDGMENTS

The authors thank Alwina Knorr, Rene Berger, Daniel Münster, Frank Heinemeyer, and David Sylla for valuable help with the sample preparation and Jan-Hendrik Petermann and Chistopher Kranz for fruitful discussions on cell concepts and the cost model. This work was supported by the Federal Ministry for Environment, Nature Conservation, and Nuclear Safety and the Federal Ministry for Economic Affairs and Energy under the contract FKZ 0325461 (MEMO), and by the state of Lower Saxony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Niepelt.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niepelt, R., Hensen, J., Steckenreiter, V. et al. Kerfless exfoliated thin crystalline Si wafers with Al metallization layers for solar cells. Journal of Materials Research 30, 3227–3240 (2015). https://doi.org/10.1557/jmr.2015.309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.309

Navigation