Skip to main content
Log in

Microstructure, texture, and enhanced mechanical properties of an extruded Mg–rare earth alloy after hot compression

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An extruded Mg–8Gd–4Y–1Nd–0.5Zr alloy was preheated at 500 °C for 0.5 h and then subjected to hot compression to a true strain of 0.69 at temperature 450 °C and a strain rate of 0.2 s−1. It is observed that boundaries of small grains (∼3 µm) in the extruded alloy are decorated with irregular-shaped particles; small grains show a weak texture of three main components of \(\left\langle {0001} \right\rangle //{\rm{TD}},\;\left\langle {11\bar 21} \right\rangle //{\rm{ND}}\), and \(\left\langle {10\bar 10} \right\rangle //{\rm{ED}}\). Dynamic recrystallization is concurrent with dynamic precipitation of particles during hot compression, resulting in both a uniform grain structure and a redistribution of particles. The retained particles before compression keep the texture unchanged during compression, leading to the same texture type of \(\left\langle {0001} \right\rangle //{\rm{TD}}\) of the compressed alloy as that of the preheated alloy. The compressed alloy exhibits a better aging hardening ability than the extruded alloy. After peak aging, the compressed alloy presents an ultimate tensile strength of 416 MPa, a yield tensile strength of 317 MPa, and an elongation of 2.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. S. Liang, D. Guan, X. Tan, L. Chen, and Y. Tang: Effect of isothermal aging on the microstructure and properties of as-cast Mg–Gd–Y–Zr alloy. Mater. Sci. Eng., A 528, 1589 (2011).

    Article  Google Scholar 

  2. C.P. Tang, L. Yang, D. Feng, Y.L. Deng, and X.M. Zhang: Investigation on microstructure and mechanical properties of a Mg–Gd–Y–Zr Alloy plate. Mater. Manuf. Processes 27, 609 (2012).

    Article  CAS  Google Scholar 

  3. X.M. Zhang, C.P. Tang, Y.L. Deng, L. Yang, and W.J. Liu: Phase transformation in Mg–8Gd–4Y–Nd–Zr alloy. J. Alloys Compd. 509, 6170 (2011).

    Article  CAS  Google Scholar 

  4. J. Bohlen, S. Yi, D. Letzig, and K.U. Kainer: Effect of rare earth elements on the microstructure and texture development in magnesium–manganese alloys during extrusion. Mater. Sci. Eng., A 527, 7092 (2010).

    Article  Google Scholar 

  5. F.A. Mirza, D.L. Chen, D.J. Li, and X.Q. Zeng: Effect of rare earth elements on deformation behavior of an extruded Mg–10Gd–3Y–0.5Zr alloy during compression. Mater. Des. 46, 411 (2013).

    Article  CAS  Google Scholar 

  6. N. Stanford and M. Barnett: The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng., A 496, 399 (2008).

    Article  Google Scholar 

  7. W.X. Wu, L. Jin, F.H. Wang, J. Sun, Z.Y. Zhang, W.J. Ding, and J. Dong: Microstructure and texture evolution during hot rolling and subsequent annealing of Mg–1Gd alloy. Mater. Sci. Eng., A 582, 194 (2013).

    Article  CAS  Google Scholar 

  8. T.L. Zhu, J.F. Sun, C.L. Cui, R.Z. Wu, S. Betsofen, Z. Leng, J.H. Zhang, and M.L. Zhang: Influence of Y and Nd on microstructure, texture and anisotropy of Mg–5Li–1A1 alloy. Mater. Sci. Eng., A 600, 1 (2014).

    Article  CAS  Google Scholar 

  9. J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew: The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater. 55, 2101 (2007).

    Article  CAS  Google Scholar 

  10. E.A. Ball and P.B. Prangnell: Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scr. Metall. Mater. 31, 111 (1994).

    Article  CAS  Google Scholar 

  11. T. Al-Samman and X. Li: Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater. Sci. Eng., A 528, 3809 (2011).

    Article  Google Scholar 

  12. X. Hou, Q. Peng, Z. Cao, S. Xu, S. Kamado, L. Wang, Y. Wu, and L. Wang: Structure and mechanical properties of extruded Mg–Gd based alloy sheet. Mater. Sci. Eng., A 520, 162 (2009).

    Article  Google Scholar 

  13. X. Liu, Q. Le, Z. Zhang, L. Bao, and J. Cui: Effects of Nd/Gd ratio on the microstructures and mechanical properties of Mg–Gd–Y–Nd–Zr alloys. Indian J. Eng. Mater. Sci. 22, 14 (2015).

    Article  CAS  Google Scholar 

  14. Q. Peng, J. Wang, Y. Wu, and L. Wang: Microstructures and tensile properties of Mg–8Gd–0.6Zr–xNd–yY (x + y = 3, mass%) alloys. Mater. Sci. Eng., A 433, 133 (2006).

    Article  Google Scholar 

  15. L. Li, X.M. Zhang, Y.L. Deng, and C.P. Tang: Superplasticity and microstructure in Mg–Gd–Y–Zr rolled sheet. J. Alloys Compd. 485, 295 (2009).

    Article  CAS  Google Scholar 

  16. Y.P. Wu, X.M. Zhang, Y.L. Deng, C.P. Tang, and Y.Y. Zhong: Effect of secondary extrusion on the microstructure and mechanical properties of a Mg–RE alloy. Mater. Sci. Eng., A 616, 148 (2014).

    Article  CAS  Google Scholar 

  17. S.A. Farzadfar, M. Sanjari, I.H. Jung, E. Essadiqi, and S. Yue: Role of yttrium in the microstructure and texture evolution of Mg. Mater. Sci. Eng., A 528, 6742 (2011).

    Article  CAS  Google Scholar 

  18. T. Al-Samman, X. Li, and S.G. Chowdhury: Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy. Mater. Sci. Eng., A 527, 3450 (2010).

    Article  Google Scholar 

  19. L.L. Chang, Y.N. Wang, X. Zhao, and M. Qi: Grain size and texture effect on compression behavior of hot-extruded Mg–3Al–1Zn alloys at room temperature. Mater. Charact. 60, 991 (2009).

    Article  CAS  Google Scholar 

  20. S.H. Choi, J.K. Kim, B.J. Kim, and Y.B. Park: The effect of grain size distribution on the shape of flow stress curves of Mg–3Al–1Zn under uniaxial compression. Mater. Sci. Eng., A 488, 458 (2008).

    Article  Google Scholar 

  21. P. Dobroň, F. Chmelík, S. Yi, K. Parfenenko, D. Letzig, and J. Bohlen: Grain size effects on deformation twinning in an extruded magnesium alloy tested in compression. Scr. Mater. 65, 424 (2011).

    Article  Google Scholar 

  22. B. Wang, R. Xin, G. Huang, and Q. Liu: Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression. Mater. Sci. Eng., A 534, 588 (2012).

    Article  CAS  Google Scholar 

  23. B.Q. Shi, R.S. Chen, and W. Ke: Effects of forging processing on the texture and tensile properties of ECAEed AZ80 magnesium alloy. Mater. Sci. Eng., A 546, 323 (2012).

    Article  CAS  Google Scholar 

  24. S. Wang, S. Kang, and J. Cho: Effect of hot compression and annealing on microstructure evolution of ZK60 magnesium alloys. J. Mater. Sci. 44, 5475 (2009).

    Article  CAS  Google Scholar 

  25. J.P. Hadorn, K. Hantzsche, S.B. Yi, J. Bohlen, D. Letzig, J. Wollmershauser, and S.R. Agnew: Role of solute in the texture modification during hot deformation of Mg-rare earth alloys. Metall. Mater. Trans. A 43, 1347 (2012).

    Article  CAS  Google Scholar 

  26. L. Li: Deformation band and texture of a cast Mg–RE alloy under uniaxial hot compression. Mater. Sci. Eng., A 528, 7178 (2011).

    Article  CAS  Google Scholar 

  27. X. Xia, K. Zhang, X. Li, M. Ma, and Y. Li: Microstructure and texture of coarse-grained Mg–Gd–Y–Nd–Zr alloy after hot compression. Mater. Des. 44, 521 (2013).

    Article  CAS  Google Scholar 

  28. R. Cottam, J. Robson, G. Lorimer, and B. Davis: Dynamic recrystallization of Mg and Mg–Y alloys: Crystallographic texture development. Mater. Sci. Eng., A 485, 375 (2008).

    Article  Google Scholar 

  29. N. Stanford, D. Atwell, and M.R. Barnett: The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys. Acta Mater. 58, 6773 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from the National Basic Research Program of China (No. A0420110401). The present work was also carried out with the support of the Advanced Characterization Facility in Waurn ponds campus of Deakin University, Geelong, Victoria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ping Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y.P., Zhang, X.M., Deng, Y.L. et al. Microstructure, texture, and enhanced mechanical properties of an extruded Mg–rare earth alloy after hot compression. Journal of Materials Research 30, 3776–3783 (2015). https://doi.org/10.1557/jmr.2015.362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.362

Navigation