Skip to main content
Log in

Direct metal laser sintering synthesis of carbon nanotube reinforced Ti matrix composites: Densification, distribution characteristics and properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) reinforced Ti matrix composites with tailored microstructures and properties were fabricated by direct metal laser sintering (DMLS). A relationship of processing conditions, distribution characteristics of CNTs, and properties was established. The appearance of balling phenomenon and micropores at relatively low laser energy input reduced the densification level of DMLS CNTs/Ti composites. As a η of 700 J/m was properly settled, the composite part with a near-full 96.8% density was obtained. On increasing the laser energy input, the distribution states of CNTs in Ti matrix changed markedly from agglomeration to homodisperse. The optimally prepared fully dense CNTs/Ti composite with uniform distribution of CNTs had significantly enhanced Hd of 9.4 GPa and Er of 328 GPa, which showed respectively ∼2.5- and ∼3.4-fold increase upon that of unreinforced Ti, and resultant a relatively low friction coefficient of 0.23 and reduced wear rate of 3.8 × 10−5 mm3/(N m).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. K.S. Munir, P. Kingshott, and C. Wen: Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—A review. Crit. Rev. Solid State Mater. Sci. 40, 38 (2015).

    Article  CAS  Google Scholar 

  2. B. Ye, M.R. Matsen, and D.C. Dunand: Enhanced densification of Ti-6Al-4V/TiC powder blends by transformation mismatch plasticity. J. Mater. Res. 28, 2520 (2013).

    Article  CAS  Google Scholar 

  3. B.C. Zhang, H.L. Liao, and C. Coddet: Microstructure evolution and density behavior of CP Ti parts elaborated by self-developed vacuum selective laser melting system. Appl. Surf. Sci. 279, 310 (2013).

    Article  CAS  Google Scholar 

  4. E.L. Hall and A.M. Ritter: Structure and behavior of metal/ceramic interfaces in Ti alloy/SiC metal matrix composites. J. Mater. Res. 8, 1158 (1993).

    Article  CAS  Google Scholar 

  5. H. Attar, M. Bönisch, M. Calin, L.C. Zhang, K. Zhuravleva, A. Funk, S. Scudino, C. Yang, and J. Eckert: Comparative study of microstructures and mechanical properties of in situ Ti-TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. J. Mater. Res. 29, 1941 (2014).

    Article  CAS  Google Scholar 

  6. V.K. Balla, A. Bhat, S. Bose, and A. Bandyopadhyay: Laser processed TiN reinforced Ti6Al4V composite coatings. J. Mech. Behav. Biomed. Mater. 6, 9 (2012).

    Article  CAS  Google Scholar 

  7. S. Lijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    Article  Google Scholar 

  8. S.R. Bakshi, D. Lahiri, and A. Agarwal: Carbon nanotube reinforced metal matrix composites-a review. Int. Mater. Rev. 55, 41 (2010).

    Article  CAS  Google Scholar 

  9. D.J. Woo, J.P. Hooper, S. Osswald, B.A. Bottolfson, and L.N. Brewer: Low temperature synthesis of carbon nanotube-reinforced aluminum metal composite powders using cryogenic milling. J. Mater. Res. 29, 2644 (2014).

    Article  CAS  Google Scholar 

  10. M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).

    Article  CAS  Google Scholar 

  11. E.W. Wong, P.E. Sheehan, and C.M. Lieber: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997).

    Article  CAS  Google Scholar 

  12. H. Choi, J. Shin, B. Min, J. Park, and D. Bae: Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J. Mater. Res. 24, 2610 (2009).

    Article  CAS  Google Scholar 

  13. D.D. Gu and Y.F. Shen: Microstructures and properties of direct laser sintered tungsten carbide (WC) particle reinforced Cu matrix composites with RE-Si-Fe addition: A comparative study. J. Mater. Res. 24, 3397 (2009).

    Article  CAS  Google Scholar 

  14. D.D. Gu: Laser Additive Manufacturing Of High-Performance Materials (Springer-Verlag Berlin Heidelberg, Germany, 2015).

    Book  Google Scholar 

  15. X.M. Yuan and S.Q. Huang: Microstructural characterization of MWCNTs/magnesium alloy composites fabricated by powder compact laser sintering. J. Alloys Compd. 620, 80 (2015).

    Article  CAS  Google Scholar 

  16. D.D. Gu and Y.F. Shen: Influence of reinforcement weight fraction on microstructure and properties of submicron WC-Cop/Cu bulk MMCs prepared by direct laser sintering. J. Alloys Compd. 431, 112 (2007).

    Article  CAS  Google Scholar 

  17. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  18. J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56, 730 (2007).

    Article  Google Scholar 

  19. D.D. Gu, W. Meiners, D. Wissenbach, and R. Poprawe: Laser additive manufacturing of metallic composites: Materials, processes and mechanisms. Int. Mater. Rev. 57, 133 (2012).

    Article  CAS  Google Scholar 

  20. I. Takamichi and I.L.G. Roderick: The Physical Properties of Liquid Metals, 1st ed. (Clarendon Press, Oxford, 1993).

    Google Scholar 

  21. K.C. Mills and Y.C. Su: Review of surface tension date for metallic elements and alloys: Part 1—Pure metals. Int. Mater. Rev. 51, 329 (2006).

    Article  CAS  Google Scholar 

  22. H.J. Niu and I.T.H. Chang: Instability of scan tracks of selective laser sintering of high speed steel powder. Scr. Mater. 41, 1229 (1999).

    Article  CAS  Google Scholar 

  23. D.D. Gu and Y.F. Shen: Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater. Des. 30, 2903 (2009).

    Article  CAS  Google Scholar 

  24. X.B. Zhou and J.T.M.D. Hosson: Reactive wetting of liquid metals on ceramic subtrates. Acta Mater. 44, 421 (1996).

    Article  CAS  Google Scholar 

  25. C.F. Deng, X.X. Zhang, D.Z. Wang, Q. Lin, and A.B. Li: Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater. Lett. 61, 1725 (2007).

    Article  CAS  Google Scholar 

  26. H.J. Niu and I.T.H. Chang: Selective laser sintering of gas and water atomized high speed steel powders. Scr. Mater. 41, 25 (1999).

    Article  CAS  Google Scholar 

  27. K. Arafune and A. Hirata: Thermal and solutal Marangoni convection in In–Ga–Sb system. J. Cryst. Growth 197, 811 (1999).

    Article  CAS  Google Scholar 

  28. L.A. Anestiev and L. Froyen: Model of the primary rearrangement processes at liquid phase sintering and selective laser sintering due to biparticle interactions. J. Appl. Phys. 86, 4008 (1999).

    Article  CAS  Google Scholar 

  29. L.H. Liu, C. Yang, F. Wang, S.G. Qu, X.Q. Li, W.W. Zhang, Y.Y. Li, and L.C. Zhang: Ultrafine grained Ti-based composites with ultrahigh strength and ductility achieved by equiaxing microstructure. Mater. Des. 79, 1 (2015).

    Article  CAS  Google Scholar 

  30. R.D. Li, T.C. Yuan, Z.L. Qiu, K.C. Zhou, and J.L. Li: Nanostructured Co–Cr–Fe alloy surface layer fabricated by combination of laser clad and friction stir processing. Surf. Coat. Technol. 258, 415 (2014).

    Article  CAS  Google Scholar 

  31. C. Guo, J.S. Zhou, J.R. Zhao, L.Q. Wang, Y.J. Yu, J.M. Chen, and H.D. Zhou: Improvement of the oxidation and wear resistance of pure Ti by laser-cladding Ti3Al coating at elevated temperature. Tribol. Lett. 42, 151 (2011).

    Article  CAS  Google Scholar 

  32. K.G. Prashanth, B. Debalina, Z. Wang, P.F. Gostion, A. Gebert, M. Calin, U. Kühn, M. Kamaraj, S. Scudino, and J. Eckert: Tribological and corrosion properties of Al-12Si produced by selective laser melting. J. Mater. Res. 29, 2044 (2014).

    Article  CAS  Google Scholar 

  33. G. Cui, L. Lu, J. Wu, Y. Liu, and G. Gao: Microstructure and tribological properties of Fe–Cr matrix self-lubricating composites against Si3N4 at high temperature. J. Alloys Compd. 611, 235 (2014).

    Article  CAS  Google Scholar 

  34. A.M.A. Qutub, A. Khalil, N. Saheb, and A.S. Hakeem: Wear and friction behavior of Al6061 alloy reinforced with carbon nanotubes. Wear 297, 752 (2013).

    Article  Google Scholar 

  35. X. Feng, J.H. Sui, W. Cai, and A.L. Liu: Improving wear resistance of TiNi matrix composites reinforced by carbon nanotubes and in situ TiC. Scr. Mater. 64, 824 (2011).

    Article  CAS  Google Scholar 

  36. Q.B. Jia and D.D. Gu. Selective laser melting additive manufacturing of TiC/Inconel 718 bulk-form nanocomposites: Densification, microstructure and performance. J. Mater. Res. 29, 1960 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51322509 and 51575267), the Top-Notch Young Talents Program of China, the Outstanding Youth Foundation of Jiangsu Province of China (No. BK20130035), the Program for New Century Excellent Talents in University (No. NCET-13-0854), the Science and Technology Support Program (The Industrial Part), Jiangsu Provincial Department of Science and Technology of China (No. BE2014009-2), the 333 Project (No. BRA2015368), Science and Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Human Resources and Social Security of China, the Aeronautical Science Foundation of China (No. 2015ZE52051), the Shanghai Aerospace Science and Technology Innovation Fund (No. SAST2015053), the Fundamental Research Funds for the Central Universities (Nos. NE2013103 and NP2015206), the Foundation of Graduate Innovation Center in NUAA and the Fundamental Research Funds for the Central Universities (No. kfjj20150601), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, K., Gu, D. Direct metal laser sintering synthesis of carbon nanotube reinforced Ti matrix composites: Densification, distribution characteristics and properties. Journal of Materials Research 31, 281–291 (2016). https://doi.org/10.1557/jmr.2015.403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.403

Navigation