Skip to main content
Log in

Graphite–graphene hybrid filler system for high thermal conductivity of epoxy composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thermal conductivities of epoxy composites of mixtures of graphite and graphene in varying ratios were measured. Thermal characterization results showed unexpectedly high conductivities at a certain ratio filler ratio. This phenomenon was exhibited by samples with three different overall filler concentrations (graphene + graphite) of 7, 14, and 35 wt%. The highest thermal conductivity of 42.4 ± 4.8 W/m K (nearly 250 times the thermal conductivity of pristine epoxy) was seen for a sample with 30 wt% graphite and 5 wt% graphene when characterized using the dual-mode heat flow meter technique. This significant improvement in thermal conductivity can be attributed to the lowering of overall thermal interface resistance due to small amounts of nanofillers (graphene) improving the thermal contact between the primary microfillers (graphite). The synergistic effect of this hybrid filler system is lost at higher loadings of the graphene relative to graphite. Graphite and graphene mixed in the ratio of 6:1 yielded the highest thermal conductivities at three different filler loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2

Similar content being viewed by others

References

  1. J. Heremans and C.P. Beetz Jr.: Thermal conductivity and thermopower of vapor-grown graphite fibers. Phys. Rev. B 32, 1981 (1985).

    Article  CAS  Google Scholar 

  2. G.A. Slack: Anisotropic thermal conductivity of pyrolytic graphite. Phys. Rev. 127, 694 (1962).

    Article  CAS  Google Scholar 

  3. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrahn, F. Miao, and C.N. Lau: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).

    Article  CAS  Google Scholar 

  4. S. Shenogin, L. Xue, R. Ozisik, P. Keblinski, and D.G. Cahill: Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl. Phys. 95, 8136 (2004).

    Article  CAS  Google Scholar 

  5. P. Gonnet, Z. Liang, E.S. Choi, R.S. Kadambala, C. Zhang, J.S. Brooks, B. Wang, and L. Kramer: Thermal conductivity of magnetically aligned carbon nanotube buckypapers and composites. Curr. Appl. Phys. 6, 119 (2006).

    Article  Google Scholar 

  6. S. Iijima: Helical microtubes of graphitic carbon. Nature. 354, 56 (1991).

    Article  CAS  Google Scholar 

  7. P.M. Ajayan, O. Stephan, C. Colliex, and D. Trauth: Aligned carbon nanotube arrays formed by cutting a polymer resin—Nanotube composite. Science 265, 1212 (1994).

    Article  CAS  Google Scholar 

  8. E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, and K. Dahmen: Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl. Phys. 94, 6034 (2003).

    Article  CAS  Google Scholar 

  9. A. Moisala, Q. Li, I.A. Kinloch, and A.H. Windle: Thermal and electrical conductivity of single and multi-walled carbon nanotube-epoxy composites. Compos. Sci. Technol. 65, 1285 (2006).

    Article  Google Scholar 

  10. F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhafer, A.H. Windle, and K. Scuttle: Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47, 2036 (2006).

    Article  CAS  Google Scholar 

  11. A. Yu, M.E. Itkis, E. Bekyarova, and R.C. Haddon: Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl. Phys. Lett. 89, 133102 (2006).

    Article  Google Scholar 

  12. J. Guo, B. Zhao, M.E. Itkis, E. Bekyarova, H. Hu, V. Karnak, A. Yu, and R.C. Haddon: Chemical engineering of the single-walled carbon nanotube-nylon 6 interface. J. Am. Chem. Soc. 128, 7492 (2006).

    Article  Google Scholar 

  13. S. Shenogin, A. Bodapati, L. Xue, R. OIzisik, and P. Keblinski: Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl. Phys. Lett. 85, 2229 (2004).

    Article  CAS  Google Scholar 

  14. C. Guthy, F. Du, S. Brand, K.I. Winey, and J.E. Fischer: Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites. J. Heat Transfer 129, 1096 (2007).

    Article  CAS  Google Scholar 

  15. K. Yang, M. Gu, Y. Guo, X. Pan, and G. Mu: Effects of carbon nanotube functionalization on the the mechanical and thermal properties of epoxy composites. Carbon 47, 1723 (2009).

    Article  CAS  Google Scholar 

  16. F. Du, C. Guthy, T. Kashiwagi, J.E. Fischer, and K.I. Winey: An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity. J. Polym. Sci., Part B: Polym. Phys. 44, 1513 (2006).

    Article  CAS  Google Scholar 

  17. Q.M. Gong, Z. Li, X.D. Bai, D. Li, Y. Zhao, and J. Liang: Thermal properties of aligned carbon nanotube/carbon nanocomposites. Mater. Sci. Eng., A 384, 209 (2004).

    Article  Google Scholar 

  18. H. Huang, C.H. Liu, Y. Wu, and S.S. Fan: Aligned carbon nanotube composite films for thermal management. Adv. Mater. 17, 1652 (2005).

    Article  CAS  Google Scholar 

  19. J.G. Park, Q. Cheng, J. Lu, J. Bao, S. Li, Y. Tian, Z. Liang, C. Zhang, and B. Wang: Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization. Carbon 50, 2083 (2012).

    Article  CAS  Google Scholar 

  20. L.M. Veca, M.J. Meziani, W. Wang, X. Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J.W. Connell, and Y.P. Sun: Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv. Mater. 21, 2088 (2009).

    Article  CAS  Google Scholar 

  21. M. Moniruzzaman and K. Winey: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194 (2006).

    Article  CAS  Google Scholar 

  22. S. Kumar, M.A. Alam, and J.Y. Murthy: Effect of percolation on thermal transport in nanotube composites. Appl. Phys. Lett. 90, 104105 (2007).

    Article  Google Scholar 

  23. P. Keblinski and F. Cleri: Contact resistance in percolating networks. Phys. Rev. B 69, 184201 (2004).

    Article  Google Scholar 

  24. M. Foygel, R.D. Morris, D. Anez, S. French, and V.L. Sobolev: Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Phys. Rev. B 71, 104201 (2005).

    Article  Google Scholar 

  25. T. Hu, A.Y. Grosberg, and B.I. Shklovskii: Conductivity of a suspension of nanowires in a weakly conducting medium. Phys. Rev. B 73, 155434 (2006).

    Article  Google Scholar 

  26. W. Tian and R. Yang: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Appl. Phys. Lett. 90, 263105 (2007).

    Article  Google Scholar 

  27. D. Konatham and A. Stroilo: Thermal boundary resistance at the graphene-oil interface. Appl. Phys. Lett. 95, 163105 (2009).

    Article  Google Scholar 

  28. S.T. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, and P. Keblinski: Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2, 731 (2003).

    Article  CAS  Google Scholar 

  29. X. Sun, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon: Dependence of the thermal conductivity of two-dimensional graphite nanoplatelet-based composites on the nanoparticle size distribution. J. Phys.: Condens. Mater. 22, 334216 (2010).

    Google Scholar 

  30. C.C. Teng, C.C.M. Ma, C.H. Lu, S.Y. Yang, S.H. Lee, M.C. Hsiao, M.Y. Yen, K.C. Chiou, and T.M. Lee: Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49, 5107 (2011).

    Article  CAS  Google Scholar 

  31. A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, and R.C. Haddon: Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv. Mater. 20, 4740 (2008).

    Article  CAS  Google Scholar 

  32. K.M.F. Shahil and A.A. Balandin: Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12, 861 (2012).

    Article  CAS  Google Scholar 

  33. K. Bui, H.M. Duong, A. Striolo, and D.V. Papavassiliou: Effective heat transfer properties of graphene sheet nanocomposites and comparison to carbon nanotube nanocomposites. J. Phys. Chem. C 115, 3872 (2011).

    Article  CAS  Google Scholar 

  34. N.K. Mahanta and A.R. Abramson: Development of the thermal flash method for characterization of carbon nanofibers. In Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference, Honolulu, Hawaii, USA, March 2011.

  35. N.K. Mahanta and A.R. Abramson: The thermal flash technique: The inconsequential effect of contact resistance and the characterization of carbon nanotube clusters. Rev. Sci. Instrum. 83, 054904 (2012).

    Article  Google Scholar 

  36. N.K. Mahanta and A.R. Abramson: Thermal conductivity of graphene and graphene oxide nanoplatelets In Proceedings of the 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, California, USA, May 2012.

  37. N.K. Mahanta, A.R. Abramson, and J.Y. Howe: Thermal conductivity measurements on individual vapor-grown carbon nanofibers and graphene nanoplatelets. J Appl. Phys. 114, 163528 (2013).

    Article  Google Scholar 

  38. N.K. Mahanta and A.R. Abramson: The dual-mode heat flow meter technique: A versatile method for characterizing thermal conductivity. Int. J. Heat Mass Transfer 53, 5581 (2010).

    Article  CAS  Google Scholar 

  39. N.K. Mahanta, A.R. Abramson, M.L. Lake, D.J. Burton, J.C. Chang, H.K. Mayer, and J.L. Ravine: Thermal conductivity of carbon nanofiber mats. Carbon 48, 4457 (2010).

    Article  CAS  Google Scholar 

  40. F. Deng, Q.S. Zheng, L.F. Wang, and C.W. Nan: Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 90, 021914 (2007).

    Article  Google Scholar 

  41. F. Deng and Q.S. Zheng: Interaction models for effective thermal and electrical conductivities of carbon nanotube composites. Acta Mech. Solida Sin. 22, 1 (2009).

    Article  Google Scholar 

  42. A.L. Moore, A.T. Cummins, J.M. Jensen, and L. Shi, J.H. Koo: Thermal conductivity measurements of nylon 11-carbon nanofiber nanocomposites. J. Heat Transfer 131, 091602 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis R. Abramson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahanta, N.K., Loos, M.R., Manas Zlocozower, I. et al. Graphite–graphene hybrid filler system for high thermal conductivity of epoxy composites. Journal of Materials Research 30, 959–966 (2015). https://doi.org/10.1557/jmr.2015.68

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.68

Navigation