Skip to main content
Log in

Gamma prime stability and its influence on tensile behavior of a wrought superalloy with different Fe contents

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Gamma prime (γ′) stability and its influence on tensile behavior of a newly developed wrought superalloy with various Fe contents was studied both experimentally and thermodynamically. The results show that the γ′-solvus temperature is higher and γ–γ′ lattice mismatch is bigger in the alloy with the lower Fe content. During long-term thermal exposure at 650–750 °C, the coarsening behavior of γ′ precipitates follows Ostwald ripening kinetics and the lower Fe content can decrease the coarsening rate of γ′ precipitates due to the increase of the activation energy for γ′ coarsening. Moreover, the lower Fe content can retard the transformation from γ′ to η phase. The tensile properties of the alloys with different Fe contents are almost same after standard heat treatment. However, after thermal exposure, the decrease of tensile strength in the alloy with lower Fe content is less than that of the alloys with higher Fe content due to the improvement of γ′ stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  1. B. Jørgen, K. Sven, and R. Blum: High-efficiency coal-fired power plants development and perspectives. Energy 31, 1439 (2006).

    Google Scholar 

  2. R. Viswanathan and W. Bakker: U.S. program on materials technology for ultra-supercritical coal power plants. J. Mater. Eng. Perform. 10, 81 (2006).

    Article  Google Scholar 

  3. J.H. Oh, B.G. Yoo, I.C. Choi, M.L. Santella, and J.I. Jang: Influence of thermo-mechanical treatment on the precipitation strengthening behavior of Inconel 740, a Ni-based superalloy. J. Mater. Res. 26, 1253 (2011).

    Article  CAS  Google Scholar 

  4. J.P. Shingledecker, N.D. Evans, and G.M. Pharr: Influences of composition and grain size on creep-rupture behavior of Inconel alloy 740. Mater. Sci. Eng., A 578, 277 (2013).

    Article  CAS  Google Scholar 

  5. I.S. Kim, B.G. Choi, H.U. Hong, J. Do, and C.Y. Jo: Influence of thermal exposure on the microstructural evolution and mechanical properties of a wrought Ni-base superalloy. Mater. Sci. Eng., A 593, 55 (2014).

    Article  CAS  Google Scholar 

  6. Y. Yang, R.C. Thomson, R.M. Leese, and S. Roberts: Microstructural evolution in cast Haynes 282 for application in advanced power plants (EPRI, Waikoloa, 2013); p. 143.

    Google Scholar 

  7. C.S. Wang, Y.A. Guo, J.T. Guo, and L.Z. Zhou: Microstructural stability and mechanical properties of a boron modified Ni–Fe based superalloy for steam boiler applications. Mater. Sci. Eng., A 639, 380 (2015).

    Article  CAS  Google Scholar 

  8. Z.H. Zhong, Y.F. Gu, Y. Yuan, and Z. Shi: A new wrought Ni–Fe-base superalloy for advanced ultra-supercritical power plant applications beyond 700 °C. Mater. Lett. 109, 343 (2013).

    Article  Google Scholar 

  9. C.S. Wang, H.Q. Zhao, Y.A. Guo, J.T. Guo, and L.Z. Zhou: Structural stability and mechanical properties of phosphorus modified Ni–Fe based superalloy GH984. Mater. Res. Innovations 18 (S4), 324 (2014).

    Google Scholar 

  10. D. Raynor and J.M. Silcock: Strengthening mechanisms in γ′ precipitating alloys. Met. Sci. J. 4, 121 (1970).

    Article  CAS  Google Scholar 

  11. Z.H. Yu, J. Qiang, J. Zhang, and L. Liu: Microstructure evolution during heat treatment of superalloys loaded with different amounts of carbon. J. Mater. Res. 30, 2064 (2015).

    Article  CAS  Google Scholar 

  12. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock: Strengthening mechanisms in polycrystalline multimodal nickel-based superalloys. Metall. Mater. Trans. A 40, 1588 (2009).

    Article  Google Scholar 

  13. B.D. Fu, K. Du, G.M. Han, C.Y. Cui, and J.X. Zhang: Deformation mechanisms in a Co-rich nickel based superalloy with different size of γ′ precipitates. Mater. Lett. 152, 272 (2015).

    Article  CAS  Google Scholar 

  14. A.K. Koul and R. Castillo: Assessment of service induced microstructural damage and its rejuvenation in turbine blades. Metall. Trans. A 19, 2049 (1988).

    Article  Google Scholar 

  15. K. Kusabiraki, Y. Takasawa, and T. Ooka: Precipitation and growth of γ′ and η phases in 53Fe–26Ni–15Cr Alloy. ISIJ Int. 35, 542 (1995).

    Article  CAS  Google Scholar 

  16. X.Z. Qin, J.T. Guo, C. Yuan, J.S. Hou, L.Z. Zhou, and H.Q. Ye: Long-term thermal exposure responses of the microstructure and properties of a cast Ni-base superalloy. Mater. Sci. Eng., A 543, 121 (2012).

    Article  CAS  Google Scholar 

  17. C.S. Wang, T.T. Wang, M.L. Tan, Y.A. Guo, J.T. Guo, and L.Z. Zhou: Thermal stability of a new Ni–Fe–Cr base alloy with different Ti/Al ratios. J. Mater. Sci. Technol. 31, 135 (2015).

    Article  Google Scholar 

  18. Q. Wu, H. Song, R.W. Swindeman, J.P. Shingledecker, and V.K. Vasudevan: Microstructure of long-term aged IN617 Ni-base superalloy. Metall. Mater. Trans. A 39, 2569 (2008).

    Article  Google Scholar 

  19. L.M. Suave, J. Cormier, D. Bertheau, P. Villechaise, A. Soula, Z. Hervier, and F. Hamon: High temperature low cycle fatigue properties of alloy 625. Mater. Sci. Eng., A 650, 161 (2016).

    Article  Google Scholar 

  20. X.F. Yuan, J.X. Song, Y.R. Zheng, Q. Huang, K. Yagi, C.B. Xiao, and Q. Feng: Quantitative microstructural evolution and corresponding stress rupture property of K465 alloy. Mater. Sci. Eng., A 651, 734 (2016).

    Article  CAS  Google Scholar 

  21. T.T. Wang, C.S. Wang, W. Sun, X.Z. Qin, J.T. Guo, and L.Z. Zhou: Microstructure evolution and mechanical properties of GH984G alloy with different Ti/Al ratios during long-term thermal exposure. Mater. Des. 62, 225 (2014).

    Article  CAS  Google Scholar 

  22. J.T. Guo: Materials Science and Engineering for Superalloys (Science Publications, Beijing, 2008); p. 89.

    Google Scholar 

  23. T. Grosdidier, A. Hazotte, and A. Simon: Precipitation and dissolution processes in γ/γ′ single crystal nickel-based superalloys. Mater. Sci. Eng., A 256, 183 (1998).

    Article  Google Scholar 

  24. I.M. Lifshitz and V.V. Slyozov: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35 (1961).

    Article  Google Scholar 

  25. C.Z. Wagner: Theorie der alterung von niederschlagen durchumlosen, Zeitschrift Zeitschr. Elektrochemie 655, 81 (1961).

    Google Scholar 

  26. Z.H. Zhong, Y.F. Gu, and Y. Yuan: Microstructural stability and mechanical properties of a newly developed Ni–Fe-base superalloy. Mater. Sci. Eng., A 622, 101 (2015).

    Article  CAS  Google Scholar 

  27. S.Q. Zhao, X.S. Xie, G.D. Smith, and S.J. Patel: Gamma prime coarsening and age-hardening behaviors in a new nickel base superalloy. Mater. Lett. 58, 1784 (2004).

    Article  CAS  Google Scholar 

  28. M.L. Tan, C.S. Wang, Y.A. Guo, J.T. Guo, and L.Z. Zhou: Influence of Ti/Al ratios on γ′ coarsening behavior and tensile properties of GH984G alloy during long-term thermal exposure. Acta Metal. Sin. 50, 1260 (2014).

    CAS  Google Scholar 

  29. M.P. Jackson and R.C. Reed: Heat treatment of UDIMET 720Li the effect of microstructure on properties. Mater. Sci. Eng., A 259, 85 (1999).

    Article  Google Scholar 

  30. J.H. Oh, I.C. Choi, Y.J. Kim, B.G. Yoo, and J.I. Jang: Variations in overall- and phase-hardness of a new Ni-based superalloy during isothermal aging. Mater. Sci. Eng., A 528, 6121 (2011).

    Article  CAS  Google Scholar 

  31. E. Balikci, R.A. Mirshams, and A. Raman: Fracture behavior of superalloy IN738LC with various precipitate microstructures. Mater. Sci. Eng. A 265, 50 (1999).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National High Technology Research and Development Program of China (863 Program) (No. 2012AA03A501), the National Natural Science Foundation of China (No. 51301171), and the National Energy Administration Program of China (No. NY20150102-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Shuai Wang or Lan Zhang Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C.S., Guo, Y.A., Guo, J.T. et al. Gamma prime stability and its influence on tensile behavior of a wrought superalloy with different Fe contents. Journal of Materials Research 31, 1361–1371 (2016). https://doi.org/10.1557/jmr.2016.139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.139

Navigation