Skip to main content
Log in

Bi-modified Pd-based/carbon-doped TiO2 hollow spheres catalytic for ethylene glycol electrooxidation in alkaline medium

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The TiO2 hollow spheres (TiO2HS) were successfully prepared by a hydrothermal method and added to Vulcan XC-72 carbon black as the support materials for Pd nanoparticles. A facile approach to promote ethylene glycol (EG) electrooxidation in alkaline medium was carried out by the PdBi/TiO2HS-C catalyst. The results show that Pd and Bi nanoparticles are uniformly dispersed on the surface of carbon-doped TiO2 hollow spheres, the appropriate amount of Bi modification into Pd/TiO2HS-C catalyst can enhance remarkably the electrocatalytic activity for EG oxidation, in which the PdBi/TiO2HS-C (Pd:Bi = 1:0.1) catalyst exhibits excellent stability. The high electrochemical performance is attributed to the unique structure and high surface area of the TiO2HS, metal nanoparticles uniform distribution, the electronic effect between Pd and Bi as well as the bifunctional effect between metal nanoparticles and the support TiO2HS-C. The results obtained are significant for the development of new Pd-based TiO2HS-C electrocatalysts for alcohol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. W.P. Zhou, A. Lewera, R. Larsen, R.I. Masel, P.S. Bagus, and A. Wieckowski: Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 110, 13393 (2006).

    CAS  Google Scholar 

  2. G. Yang, Y. Chen, Y. Zhou, Y. Tang, and T. Lu: Preparation of carbon supported Pd–P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation. Electrochem. Commun. 12, 492 (2010).

    CAS  Google Scholar 

  3. J. Pang, M. Zheng, A. Wang, and T. Zhang: Catalytic hydrogenation of corn stalk to ethylene glycol and 1,2-propylene glycol. Ind. Eng. Chem. Res. 50, 6601 (2011).

    CAS  Google Scholar 

  4. X. Yuan, P. Li, H. Wang, X. Wang, X. Cheng, and Z. Cui: Enhancing the anaerobic digestion of corn stalks using composite microbial pretreatment. J. Microbiol. Biotechnol. 21, 746 (2011).

    Google Scholar 

  5. H. Yue, Y. Zhao, X. Ma, and J. Gong: Ethylene glycol: Properties, synthesis, and applications. Chem. Soc. Rev. 41, 4218 (2012).

    CAS  Google Scholar 

  6. P.K. Shen and C. Xu: Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochem. Commun. 8, 184 (2006).

    CAS  Google Scholar 

  7. J. Liu, J. Ye, C. Xu, S.P. Jiang, and Y. Tong: Electro-oxidation of methanol, 1-propanol and 2-propanol on Pt and Pd in alkaline medium. J. Power Sources 177, 67 (2008).

    CAS  Google Scholar 

  8. M.H. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M.B. Vukmirovic, and R.R. Adzic: Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir 22, 10409 (2006).

    CAS  Google Scholar 

  9. C. Bianchini and P.K. Shen: Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 109, 4183 (2009).

    CAS  Google Scholar 

  10. X. Zhang, L. Liu, Z. Zhao, B. Tu, D.R. Ou, D. Cui, X. Wei, X. Chen, and M. Cheng: Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode. Nano Lett. 15, 1703 (2015).

    CAS  Google Scholar 

  11. F. Hu, F. Ding, S. Song, and P.K. Shen: Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation. J. Power Sources 163, 415 (2006).

    CAS  Google Scholar 

  12. P. Dong, B. Liu, Y. Wang, and H. Pei: Enhanced photocatalytic activity of (Mo, C)-codoped anatase TiO2 nanoparticles for degradation of methyl orange under simulated solar irradiation. J. Mater. Res. 25, 2392 (2010).

    CAS  Google Scholar 

  13. M.E. Hassan, L. Cong, G. Liu, D. Zhu, and J. Cai: Synthesis and characterization of C-doped TiO2 thin films for visible-light-induced photocatalytic degradation of methyl orange. Appl. Surf. Sci. 294, 89 (2014).

    CAS  Google Scholar 

  14. J. Chen, F. Qiu, Y. Zhang, J. Liang, H. Zhu, and S. Cao: Enhanced supercapacitor performances using C-doped porous TiO2 electrodes. Appl. Surf. Sci. 356, 553 (2015).

    CAS  Google Scholar 

  15. J. Chen, G. Wang, X. Wang, C. Jiang, S. Zhu, and R. Wang: Synthesis of highly dispersed Pd nanoparticles with high activity for formic acid electro-oxidation. J. Mater. Res. 28, 1553 (2013).

    CAS  Google Scholar 

  16. M. Simões, S. Baranton, and C. Coutanceau: Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification. Appl. Catal., B 110, 40 (2011).

    Google Scholar 

  17. J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).

    CAS  Google Scholar 

  18. F. Liu, X. Yan, X. Chen, L. Tian, Q. Xia, and X. Chen: Mesoporous TiO2 nanoparticles terminated with carbonate-like groups: Amorphous/crystalline structure and visible-light photocatalytic activity. Catal. Today 264, 243 (2016).

    CAS  Google Scholar 

  19. H. Lu, W. Ye, P. Guo, Q. Wang, C. Lu, and X.S. Zhao: Template synthesis and electrocatalytic properties of palladium hollow spheres. Adv. Mater. 709, 11 (2013).

    CAS  Google Scholar 

  20. X. Li, J. Yu, and M. Jaroniec: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016).

    CAS  Google Scholar 

  21. X. Chen, L. Liu, and F. Huang: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).

    CAS  Google Scholar 

  22. L. Si, Z. Huang, K. Lv, H. Ye, K. Deng, and Y. Wu: Fabrication of TiO2 hollow microspheres by ammonia-induced self-transformation. J. Alloys Compd. 612, 69 (2014).

    CAS  Google Scholar 

  23. J. Cai, Y. Huang, and Y. Guo: Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium. Electrochim. Acta 99, 22 (2013).

    CAS  Google Scholar 

  24. M.M. Tusi, N.S.O. Polanco, S.G. Silva, E.V. Spinacé, and A.O. Neto: The high activity of PtBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium. Electrochem. Commun. 13, 143 (2011).

    CAS  Google Scholar 

  25. A.O. Neto, M.M. Tusi, N.S.O. Polanco, S.G. Silva, M.C. Santos, and E.V. Spinacé: PdBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 36, 10522 (2011).

    Google Scholar 

  26. I.G. Casella and M. Contursi: Characterization of bismuth adatom-modified palladium electrodes: The electrocatalytic oxidation of aliphatic aldehydes in alkaline solutions. Electrochim. Acta 52, 649 (2006).

    CAS  Google Scholar 

  27. R.N. Singh, A. Singh, and Anindita: Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH. Int. J. Hydrogen Energy 34, 2052 (2009).

    CAS  Google Scholar 

  28. D.V. Bavykin, V.N. Parmon, A.A. Lapkin, and F.C. Walsh: The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 14, 3370 (2004).

    CAS  Google Scholar 

  29. G.J. Wilson, A.S. Matijasevich, D.R.G. Mitchell, J.C. Schulz, and G.D. Will: Modification of TiO2 for enhanced surface properties: Finite Ostwald ripening by a microwave hydrothermal process. Langmuir 22, 2016 (2006).

    CAS  Google Scholar 

  30. M. Huang, G. Dong, N. Wang, J. Xu, and L. Guan: Highly dispersive Pt atoms on the surface of RuNi nanoparticles with remarkably enhanced catalytic performance for ethanol oxidation. Energy Environ. Sci. 4, 4513 (2011).

    CAS  Google Scholar 

  31. Y. Huang, S. Zheng, X. Lin, L. Su, and Y. Guo: Microwave synthesis and electrochemical performance of a PtPb alloy catalyst for methanol and formic acid oxidation. Electrochim. Acta 63, 346 (2012).

    CAS  Google Scholar 

  32. H.Y. Yin, X.L. Wang, L. Wang, Q.L. Yuan, and H.T. Zhao: Self-doped TiO2 hierarchical hollow spheres with enhanced visible-light photocatalytic activity. J. Alloys Compd. 640, 68 (2015).

    CAS  Google Scholar 

  33. J. Ju, Y. Shi, and D. Wu: TiO2 nanotube supported PdNi catalyst for methanol electro-oxidation. Powder Technol. 230, 252 (2012).

    CAS  Google Scholar 

  34. J.B. Xu, T.S. Zhao, S.Y. Shen, and Y.S. Li: Stabilization of the palladium electrocatalyst with alloyed gold for ethanol oxidation. Int. J. Hydrogen Energy 35, 6490 (2010).

    CAS  Google Scholar 

  35. I.G. Casella and M. Contursi: An electrochemical and XPS study of the electrodeposited binary Pd–Sn catalyst: The electroreduction of nitrate ions in acid medium. J. Electroanal. Chem. 588, 147 (2006).

    CAS  Google Scholar 

  36. Y. Huang, J. Cai, M. Liu, and Y. Guo: Fabrication of a novel PtPbBi/C catalyst for ethanol electro-oxidation in alkaline medium. Electrochim. Acta 83, 1 (2012).

    CAS  Google Scholar 

  37. W. Zhou and J.Y. Lee: Particle size effects in Pd-catalyzed electrooxidation of formic acid. J. Phys. Chem. C 112, 3789 (2008).

    CAS  Google Scholar 

  38. T. Holme, Y. Zhou, R. Pasquarelli, and R. O’Hayre: First principles study of doped carbon supports for enhanced platinum catalysts. Phys. Chem. Chem. Phys. 12, 9461 (2010).

    CAS  Google Scholar 

  39. Y. Liu, L. Wang, G. Wang, C. Deng, B. Wu, and Y. Gao: High active carbon supported PdAu catalyst for formic acid electrooxidation and study of the kinetics. J. Phys. Chem. C 114, 21417 (2010).

    CAS  Google Scholar 

  40. Z.X. Liang, T.S. Zhao, J.B. Xu, and L.D. Zhu: Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 54, 2203 (2009).

    CAS  Google Scholar 

  41. S. Kang, J. Lee, J.K. Lee, S.Y. Chung, and Y. Tak: Influence of Bi modification of Pt anode catalyst in direct formic acid fuel cells. J. Phys. Chem. B 110, 7270 (2006).

    CAS  Google Scholar 

  42. M. Futamata and L. Luo: Adsorbed water and CO on Pt electrode modified with Ru. J. Power Sources 164, 532 (2007).

    CAS  Google Scholar 

  43. K.H. Ye, S.A. Zhou, X.C. Zhu, C.W. Xu, and P.K. Shen: Stability analysis of oxide (CeO2, NiO, Co3O4 and Mn3O4) effect on Pd/C for methanol oxidation in alkaline medium. Electrochim. Acta 90, 108 (2013).

    CAS  Google Scholar 

  44. J.N. Zheng, L.L. He, F.Y. Chen, A.J. Wang, M.W. Xue, and J.J. Feng: A facile general strategy for synthesis of palladium-based bimetallic alloyed nanodendrites with enhanced electrocatalytic performance for methanol and ethylene glycol oxidation. J. Mater. Chem. A 2, 12899 (2014).

    CAS  Google Scholar 

  45. L. Demarconnay, S. Brimaud, C. Coutanceau, and J.M. Léger: Ethylene glycol electrooxidation in alkaline medium at multi-metallic Pt based catalysts. J. Electroanal. Chem. 601, 169 (2007).

    CAS  Google Scholar 

  46. Y. Huang, J. Cai, and Y. Guo: A high-efficiency microwave approach to synthesis of Bi-modified Pt nanoparticle catalysts for ethanol electro-oxidation in alkaline medium. Appl. Catal., B 129, 549 (2013).

    CAS  Google Scholar 

  47. M.M.O. Thotiyl, T.R. Kumar, and S. Sampath: Pd supported on titanium nitride for efficient ethanol oxidation. J. Phys. Chem. C 114, 17934 (2010).

    CAS  Google Scholar 

  48. H. Hoster, T. Iwasita, H. Baumgārtner, and W. Vielstich: Current-time behavior of smooth and porous PtRu surfaces for methanol oxidation. J. Electrochem. Soc. 148, A496 (2001).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was supported by the Natural Science Fund for Creative Research Groups of Hubei Province (2014CFA015) of China. This work was also supported by the Hubei College Students’ Innovation Training Program of China (201410512024, 201510512030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lu, D., Zhou, L. et al. Bi-modified Pd-based/carbon-doped TiO2 hollow spheres catalytic for ethylene glycol electrooxidation in alkaline medium. Journal of Materials Research 31, 3712–3722 (2016). https://doi.org/10.1557/jmr.2016.429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.429

Navigation