Skip to main content

Advertisement

Log in

Enhanced supercapacitor performance based on 3D porous graphene with MoO2 nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Three dimensional (3D) porous graphene decorated with MoO2 nanoparticles were successfully synthesized by hydrothermal method and characterized by SEM and TEM, x-ray diffraction, Raman spectra, x-ray photoelectron spectroscopy, nitrogen adsorption–desorption analysis and electrochemical experiments. The results revealed that the in situ formed monoclinic MoO2 nanoparticles were randomly decorated on the surface of graphene sheets and the obtained graphene–MoO2 nanohybrids were 3D porous structures. The mass ratio of molybdenum precursor with GO has effects on the specific surface area and the electrochemical properties of the nanocomposite. The M30G1 (the mass ratio of molybdenum precursor with GO was 30:1) composite electrode exhibited a higher specific capacitance and better cycling stability. The specific capacitances were 356 F/g at the current density of 0.1 A/g in KOH electrolyte, which predicted their potential application in energy storage. The electrochemical performance of M30G1 composite was also investigated in Na2SO4 electrolyte, which was poorer than that in KOH electrolyte. Therefore, the chosen of electrolyte is important to materials performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. G. Wang, L. Zhang, and J. Zhang: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012).

    Article  CAS  Google Scholar 

  2. Y. Huang, J. Liang, and Y. Chen: An overview of the applications of graphene-based materials in supercapacitors. Small 8, 1805 (2012).

    Article  CAS  Google Scholar 

  3. Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, and R.B. Kaner: Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44, 3639–3665 (2015).

    Article  CAS  Google Scholar 

  4. S. Patil, A. Harle, S. Sathaye, and K. Patil: Development of a novel method to grow mono-/few-layered MoS2 films and MoS2–graphene hybrid films for supercapacitor applications. CrystEngComm 16, 10845 (2014).

    Article  CAS  Google Scholar 

  5. N. Gao and X. Fang: Synthesis and development of graphene–inorganic semiconductor nanocomposites. Chem. Rev. 115, 8294 (2015).

    Article  CAS  Google Scholar 

  6. A. Prakash and D. Bahadur: The role of ionic electrolytes on capacitive performanceof ZnO–reduced graphene oxide nanohybrids with thermally tunable morphologies. ACS Appl. Mater. Interfaces 6, 1394 (2014).

    Article  CAS  Google Scholar 

  7. Y. Wang, P. He, W. Lei, F. Dong, and T. Zhang: Novel FeMoO4/graphene composites based electrode materials for supercapacitors. Compos. Sci. Technol. 103, 16 (2014).

    Article  CAS  Google Scholar 

  8. Y. Li, N. Zhao, C. Shi, E. Liu, and C. He: Improve the supercapacity performanceof MnO2-decorated graphene by controlling the oxidization extent of graphene. J. Phys. Chem. C 116, 25226 (2012).

    Article  CAS  Google Scholar 

  9. A.R. Marlinda, N.M. Huang, M.R. Muhamad, M.N. An’amt, B.Y.S. Chang, N. Yusoff, I. Harrison, H.N. Lim, C.H. Chia, and S.V. Kumar: Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater. Lett. 80, 9 (2012).

    Article  CAS  Google Scholar 

  10. Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, and X. Wu: Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interfaces 6, 2174 (2014).

    Article  CAS  Google Scholar 

  11. F. Huguenin and R.M. Torresi: Investigation of the electrical and electrochemical properties of nanocomposites from V2O5, polypyrrole, and polyaniline. J. Phys. Chem. C 112, 2202 (2008).

    Article  CAS  Google Scholar 

  12. W.J. Yu, P.X. Hou, L.L. Zhang, F. Li, C. Liu, and H.M. Cheng: Preparation and electrochemical property of Fe2O3 nanoparticles-filled carbon nanotubes. Chem. Commun. 46, 8576 (2010).

    Article  CAS  Google Scholar 

  13. G.R. Li, Z.L. Wang, F.L. Zheng, Y.N. Ou, and Y.X. Tong: ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. J. Mater. Chem. 21, 4217 (2011).

    Article  CAS  Google Scholar 

  14. J. Zhou, J. Song, H. Li, X. Feng, Z. Huang, S. Chen, Y. Ma, L. Wang, and X. Yan: The synthesis of shape-controlled α-MoO3/graphene nanocomposites for high performance supercapacitors. New J. Chem. 39, 8780 (2015).

    Article  CAS  Google Scholar 

  15. X. Wu, Y. Zeng, H. Gao, J. Su, J. Liu, and Z. Zhu: Template synthesis of hollow fusiform RuO2· x H2O nanostructure and its supercapacitor performance. J. Mater. Chem. A 1, 469 (2013).

    Article  CAS  Google Scholar 

  16. R. Giardi, S. Porro, T. Topuria, L. Thompson, C.F. Pirri, and H.C. Kim: One-pot synthesis of graphene–molybdenum oxide hybrids and their application to supercapacitor electrodes. Appl. Mater. Today 1, 27 (2015).

    Article  Google Scholar 

  17. S. Hu, F. Yin, E. Uchaker, W. Chen, M. Zhang, J. Zhou, Y. Qi, G. Cao, Y. Qi, G. Cao: Facile, and Green Preparation for the formation of MoO2–GO composites as anode material for lithium-ion batteries. J. Phys. Chem. C 118, 24890 (2014).

    Article  CAS  Google Scholar 

  18. X. Zhang, X. Zeng, M. Yang, and Y. Qi: Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. ACS Appl. Mater. Inter. 6, 1125 (2013).

    Article  Google Scholar 

  19. C. Feng, H. Gao, C. Zhang, Z. Guo, and H. Liu: Synthesis and electrochemical properties of MoO3/C nanocomposite. Electrochim. Acta 93, 101 (2013).

    Article  CAS  Google Scholar 

  20. K. Palanisamy, Y. Kim, H. Kim, J.M. Kim, and W.S. Yoon: Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries. J. Power Sources, 275, 351 (2015).

    Article  CAS  Google Scholar 

  21. L.C. Yang, W. Sun, Z.W. Zhong, J.W. Liu, Q.S. Gao, R.Z. Hu, and M. Zhu: Hierarchical MoO2/N-doped carbon heteronanowires with high rate and improved long-term performance for lithium-ion batteries. J. Power Sources 306, 78 (2016).

    Article  CAS  Google Scholar 

  22. Y. Zhou, Q. Liu, D. Liu, H. Xie, G. Wu, W. Huang, Y. Tian, Q. He, A. Khalil, Y.A. Haleem, T. Xiang, W. Chu, C. Zou, and L. Song: Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery. Electrochim. Acta 174, 8 (2015).

    Article  CAS  Google Scholar 

  23. S. Hou, G. Zhang, W. Zeng, J. Zhu, F. Gong, F. Li, and H. Duan: Hierarchical core–shell structure of ZnO Nanorod@NiO/MoO2 composite nanosheet arrays for high-performance supercapacitors. ACS Appl. Mater. Interfaces 6, 13564 (2014).

    Article  CAS  Google Scholar 

  24. K.M. Hercule, Q. Wei, A.M. Khan, Y. Zhao, X. Tian, and L. Mai: Synergistic effect of hierarchical nanostructured MoO2/Co(OH)2 with largely enhanced pseudocapacitor cyclability. Nano Lett. 13, 5685 (2013).

    Article  CAS  Google Scholar 

  25. A. Bhaskar, M. Deepa, T.N. Rao, and U.V. Varadaraju: Enhanced nanoscale conduction capability of a MoO2/graphene composite for high performance anodes in lithium ion batteries. J. Power Sources 216, 169 (2012).

    Article  CAS  Google Scholar 

  26. L.C. Yang, Q.S. Gao, Y. Tang, Y.P. Wu, and R. Holze: MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery. J. Power Sources 179, 357 (2008).

    Article  CAS  Google Scholar 

  27. X. Xu, Y. Liu, M. Wang, C. Zhu, T. Lu, R. Zhao, and L. Pan; Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochim. Acta 193, 88 (2016).

    Article  CAS  Google Scholar 

  28. M. Jana, S. Saha, P. Samanta, N.C. Murmu, N.H. Kim, T. Kuila, and J.H. Lee: Growth of Ni–Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (SILAR) method for high performance asymmetric supercapacitor electrodes. J. Mater. Chem. A 4, 2188 (2016).

    Article  CAS  Google Scholar 

  29. S. Ratha and C.S. Rout: Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl. Mater. Interfaces 5, 11427 (2013).

    Article  CAS  Google Scholar 

  30. J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, and L. Li: Metallic fabrics as the current collector for high-performance graphene-based flexible solid-state supercapacitor. ACS Appl. Mater. Interfaces 8, 4724 (2016).

    Article  CAS  Google Scholar 

  31. L. Qian and L. Lu: Fabrication of three-dimensional porous graphene–manganese dioxide composites as electrode materials for supercapacitors. Colloids Surf., A 465, 32 (2015).

    Article  CAS  Google Scholar 

  32. T. Kim, A. Ramadoss, B. Saravanakumar, G.K. Veerasubramani, and S.J. Kim: Synthesis and characterization of NiCo2O4 nanoplates as efficient electrode materials for electrochemical supercapacitors. Appl. Surf. Sci. 370, 452 (2016).

    Article  CAS  Google Scholar 

  33. J. Deng, X. Wang, X. Duan, and P. Liu: Facile preparation of MnO2/graphene nanocomposites with spent battery powder for electrochemical energy storage. ACS Sustainable Chem. Eng. 3, 1330 (2015).

    Article  CAS  Google Scholar 

  34. J. Zhang, F. Liu, J.P. Cheng, and X.B. Zhang: Binary nickel–cobalt oxides electrode materials for high-performance supercapacitors: Influence of its composition and porous nature. ACS Appl. Mater. Interfaces 7, 17630 (2015).

    Article  CAS  Google Scholar 

  35. H.C. Tao, S.C. Zhu, X.L. Yang, L.L. Zhang, and S.B. Ni: Systematic investigation of reduced graphene oxide foams for high-performance supercapacitors. Electrochim. Acta 190, 168 (2016).

    Article  CAS  Google Scholar 

  36. P. Karthika, N. Rajalakshmi, and K.S. Dhathathreyan: Functionalized exfoliated graphene oxide as supercapacitor electrodes. Soft Nanosci. Lett. 2, 59 (2012).

    Article  CAS  Google Scholar 

  37. C. Zhu, T. Liu, F. Qian, T.Y. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, and Y. Li: Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano lett. 16, 3448 (2016).

    Article  CAS  Google Scholar 

  38. Y. Zou, Q. Wang, C. Xiang, Z. She, H. Chu, S. Qiu, F. Xu, S. Liu, C. Tang, and L. Sun: One-pot synthesis of ternary polypyrrole–Prussian-blue–graphene-oxide hybrid composite as electrode material for high-performance supercapacitors. Electrochim. Acta 188, 126 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China (No. 21403130, 21373239), Natural Science Foundation of Shandong Province (ZR2014BQ028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongtao Lin or Shuping Zhuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Lin, H., Zhai, L. et al. Enhanced supercapacitor performance based on 3D porous graphene with MoO2 nanoparticles. Journal of Materials Research 32, 292–300 (2017). https://doi.org/10.1557/jmr.2016.438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.438

Navigation