Skip to main content

Advertisement

Log in

Effect of neutron radiation on the mechanical and thermophysical properties of nanoengineered polymer composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Polymer nanocomposites are being considered as future materials to effectively attenuate high energy radiations. The present work addresses effects of neutron radiation on the mechanical properties of lightweight multifunctional polymer composite which were fabricated by dispersing nanoparticles with radiation shielding properties in an epoxy polymer. Three different types of nanoparticles including boron nanopowder, gadolinium, and boron carbide, which are known for excellent radiation absorbing characteristics, were dispersed into epoxy resin to form core sheets for final hybrid sandwich structure. The neutron radiation shielding performance of nanocomposites and their mechanical and thermophysical properties were investigated. The study indicates that the neutron shielding efficiency increased significantly by introduction of nanoparticles. Moreover, the mechanical testing and thermophysical analysis showed that the core materials can retain the structural integrity after they are exposed to the highly thermalized neutron radiation in steady-state mode with a flux of 3 × 1013 n/cm2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. F.A. Cucinotta: Space radiation organ doses for astronauts on past and future missions. NASA Johnson Sp. Cent. Rep. (2007).

  2. F.A. Cucinotta, M. Alp, F.M. Sulzman, and M. Wang: Space radiation risks to the central nervous system. Life Sci. Space Res. 2, 54 (2014).

    Article  Google Scholar 

  3. A.R. Kennedy: Biological effects of space radiation and development of effective countermeasures. Life Sci. Space Res. 1, 10 (2014).

    Article  Google Scholar 

  4. F.A. Cucinotta: Space radiation risks for astronauts on multiple international space station missions. PLoS One 9, 16 (2014).

    Article  Google Scholar 

  5. Z. Li, S. Nambiar, W. Zheng, and J.T.W. Yeow: PDMS/single-walled carbon nanotube composite for proton radiation shielding in space applications. Mater. Lett. 108, 79 (2013).

    Article  CAS  Google Scholar 

  6. R.C. Good, S.P. Shen, and N.F. Dow: Active shielding concepts for the ionizing radiation in space. NASA (1994).

  7. R.K. Tripathi, J.W. Wilson, and R.C. Youngquist: Electrostatic space radiation shielding. Adv. Space Res. 42, 1043 (2008).

    Article  Google Scholar 

  8. S.A. Thibeault, J.H. Kang, G. Sauti, C. Park, C.C. Fay, and G.C. King: Nanomaterials for radiation shielding. MRS Bull. 40, 836 (2015).

    Article  CAS  Google Scholar 

  9. J.O. Stiegler and L.K. Mansur: Radiation effects in structural materials. Annu. Rev. Mater. Sci. 9, 405 (1979).

    Article  CAS  Google Scholar 

  10. A.T. Fintzou, A.V. Badeka, M.G. Kontominas, and K.A. Riganakos: Changes in physicochemical and mechanical properties of γ-irradiated polypropylene syringes as a function of irradiation dose. Radiat. Phys. Chem. 75, 87 (2006).

    Article  CAS  Google Scholar 

  11. G. Reitz: Characteristic of the radiation field in low Earth orbit and in deep space. Z. Med. Phys. 18, 233 (2008).

    Article  Google Scholar 

  12. P.W. Marshall, C.J. Dale, and E.A. Burke: Space radiation effects on optoelectronic materials and components for a 1300 nm fiber optic data bus. IEEE Trans. Nucl. Sci. 39, 1982 (1992).

    Article  CAS  Google Scholar 

  13. C.J. Mertens, B.T. Kress, M. Wiltberger, S.R. Blattnig, T.S. Slaba, S.C. Solomon, and M. Engle: Aircraft radiation exposure during a high-energy solar energetic particle event in October 2003. Space Weather. This issue No. October, 1 (2009).

  14. J. Kim, B.C. Lee, Y.R. Uhm, and W.H. Miller: Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites. J. Nucl. Mater. 453, 48 (2014).

    Article  CAS  Google Scholar 

  15. T.C. Slaba, S.R. Blattnig, S.K. Aghara, L.W. Townsend, T. Handler, T.A. Gabriel, L.S. Pinsky, and B. Reddell: Coupled neutron transport for HZETRN. Radiat. Meas. 45, 173 (2010).

    Article  CAS  Google Scholar 

  16. S. Nambiar and J.T.W. Yeow: Polymer-composite materials for radiation protection. ACS Appl. Mater. Interfaces 4, 5717–5726 (2012).

    Article  CAS  Google Scholar 

  17. S. Kodaira, R.V. Tolochek, I. Ambrozova, H. Kawashima, N. Yasuda, M. Kurano, H. Kitamura, Y. Uchihori, I. Kobayashi, H. Hakamada, A. Suzuki, I.S. Kartsev, E.N. Yarmanova, I.V. Nikolaev, and V.A. Shurshakov: Verification of shielding effect by the water-filled materials for space radiation in the International Space Station using passive dosimeters. Adv. Space Res. 53, 1 (2014).

    Article  CAS  Google Scholar 

  18. J.H. Adams, D.H. Hathaway, R.N. Grugel, J.W. Watts, T.a. Parnell, J.C. Gregory, and R.M. Winglee: Revolutionary concepts of radiation shielding for human exploration of space. NASA No. March, 1 (2005).

  19. C-H. Jung, D-H. Lee, I-T. Hwang, D-S. Im, J. Shin, P-H. Kang, and J-H. Choi: Fabrication and characterization of radiation-resistant LDPE/MWCNT nanocomposites. J. Nucl. Mater. 438, 41 (2013).

    Article  CAS  Google Scholar 

  20. W.H. Zhong, G. Sui, S. Jana, and J. Miller: Cosmic radiation shielding tests for UHMWPE fiber/nano-epoxy composites. Compos. Sci. Technol. 69, 2093 (2009).

    Article  CAS  Google Scholar 

  21. T. Özdemir, İ.K. Akbay, H. Uzun, and İ.A. Reyhancan: Neutron shielding of EPDM rubber with boric acid: Mechanical, thermal properties and neutron absorption tests. Prog. Nucl. Energy 89, 102 (2016).

    Article  Google Scholar 

  22. H. Chai, X. Tang, M. Ni, F. Chen, Y. Zhang, D. Chen, and Y. Qiu: Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber. J. Nucl. Mater. 464, 210 (2015).

    Article  CAS  Google Scholar 

  23. A.J. Nelson, L. Baby, A.Y. Boroujeni, and M.Y. Hussaini: Effect of proton irradiation on the electrical resistivity of carbon nanotube–epoxy composites. Nanosci. Nanotechnol. Lett. 7, 157 (2015).

    Article  Google Scholar 

  24. T. Özdemir: Monte Carlo simulations of radioactive waste embedded into EPDM and effect of lead filler. Radiat. Phys. Chem. 98, 150 (2014).

    Article  Google Scholar 

  25. L. Chang, Y. Zhang, Y. Liu, J. Fang, W. Luan, X. Yang, and W. Zhang: Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nucl. Instrum. Methods Phys. Res., Sect. B 356, 88 (2015).

    Article  Google Scholar 

  26. A.S. Kipcak, P. Gurses, E.M. Derun, N. Tugrul, and S. Piskin: Characterization of boron carbide particles and its shielding behavior against neutron radiation. Energy Convers. Manage. 72, 39 (2013).

    Article  CAS  Google Scholar 

  27. N.M. Chikhradze, F.D.S. Marquis, G.S. Abashidze, and L. Kurdadze: Development and performance of new gadolinium and boron containing radiation-absorbing composite systems. JOM 65, 728 (2013).

    Article  CAS  Google Scholar 

  28. J.E. Estevez, M. Ghazizadeh, J.G. Ryan, and A.D. Kelkar: Simulation of hydrogenated boron nitride nanotube’s mechanical properties for radiation shielding applications. Int. J. Chem. Sci. Eng. 8, 63 (2014).

    Google Scholar 

  29. M. Ghazizadeh, J.E. Estevez, A.D. Kelkar, and J.G. Ryan: Mechanical properties prediction of hydrogenated boron nitride nanotube’s using molecular dynamic simulations. JSM Nanotechnol. Nanomed. 2, 2 (2014).

    Google Scholar 

  30. Y. Huang, W. Zhang, L. Liang, J. Xu, and Z. Chen: A “Sandwich” type of neutron shielding composite filled with boron carbide reinforced by carbon fiber. Chem. Eng. J. 220, 143 (2013).

    Article  CAS  Google Scholar 

  31. X. Zhang, Y. Wang, and S. Cheng: Properties of UHMWPE fiber-reinforced composites. Polym. Bull. 70, 821 (2013).

    Article  CAS  Google Scholar 

  32. H. Wang, L. Xu, J. Hu, M. Wang, and G. Wu: Radiation-induced oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder by gamma rays and electron beams: A clear dependence of dose rate. Radiat. Phys. Chem. 115, 88 (2015).

    Article  CAS  Google Scholar 

  33. X. Cao, X. Xue, T. Jiang, Z. Li, Y. Ding, Y. Li, and H. Yang: Mechanical properties of UHMWPE/Sm2O3 composite shielding material. J. Rare Earths 28, 482 (2010).

    Article  Google Scholar 

  34. N.A. Galehdari, V. Mani, and A.D. Kelkar: Fabrication of Nanoengineered Radiation Shielding Multifunctional Polymeric Sandwich Composites. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 10, 257 (2016).

    Google Scholar 

  35. A. Kelkar, F. Komuves, R. Mohan, and V. Kelkar: In 52nd AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. Denver, Color. (2011).

  36. X. Zhang, X. Yan, J. Guo, Z. Liu, D. Jiang, Q. He, H. Wei, H. Gu, H.a. Colorado, X. Zhang, S. Wei, and Z. Guo: Polypyrrole doped epoxy resin nanocomposites with enhanced mechanical properties and reduced flammability. J. Mater. Chem. C 3, 162 (2015).

    Article  CAS  Google Scholar 

  37. M. Naebe, J. Wang, A. Amini, H. Khayyam, N. Hameed, L.H. Li, Y. Chen, and B. Fox: Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci. Rep. 4, (2015).

  38. M. Jalali, T. Molière, A. Michaud, and R. Wuthrich: Multidisciplinary characterization of new shield with metallic nanoparticles for composite aircrafts. Composites, Part B 50, 309 (2013).

    Article  CAS  Google Scholar 

  39. F.F. Lange and K.C. Radford: Fracture energy of an epoxy composite system. J. Mater. Sci. 6, 1197 (1971).

    Article  CAS  Google Scholar 

  40. L.M. McGrath, R.S. Parnas, S.H. King, J.L. Schroeder, D.A. Fischer, and J.L. Lenhart: Investigation of the thermal, mechanical, and fracture properties of alumina–epoxy composites. Polymer 49, 999 (2008).

    Article  CAS  Google Scholar 

  41. B. Arab and A. Shokuhfar: The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: Molecular dynamics simulation. J. Mol. Model. 19, 3719 (2013).

    Article  Google Scholar 

  42. C. Li, E. Coons, and A. Strachan: Material property prediction of thermoset polymers by molecular dynamics simulations. Acta Mech. 225, 1187 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the financial support from Joint School of Nanoscience and Nanoengineering (JSNN) and Gateway University Research Park to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit D. Kelkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galehdari, N.A., Kelkar, A.D. Effect of neutron radiation on the mechanical and thermophysical properties of nanoengineered polymer composites. Journal of Materials Research 32, 426–434 (2017). https://doi.org/10.1557/jmr.2016.494

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.494

Navigation