Skip to main content
Log in

Microstructure and mechanical properties of NiAl-based hypereutectic alloy obtained by liquid metal cooling and zone melted liquid metal cooling directional solidification techniques

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructure, room temperature compressive property, and elevated temperature tensile property of directionally solidified NiAl–Cr(Mo)–(Hf,Dy) hypereutectic alloy were investigated. The directional solidifications of liquid metal cooling technique (LMC) and zone melted liquid metal cooling technique (ZMLMC) were adopted. In the LMC alloy, the well-aligned and fully eutectic lamellar structure parallel to the growth direction is obtained. The interlamellar spacing gradually decreases with increasing the withdrawal rate, and the compressive yield strength gradually increases. In the ZMLMC alloy, the eutectic lamellar structure is disordered and not parallel to the growth direction, and the quantities of Cr(Mo) primary phases are observed. Compared to the ZMLMC alloy, the LMC alloy has a better combination property because of the well-aligned lamellar structure. The observations of crack propagation and fracture surface are performed to better understand the fracture behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. D.R. Johnson, Х.F. Chen, B.F. Oliver, R.D. Noebe, and J.D. Whittenberger: Processing and mechanical properties of in-situ composites from the NiAl-Cr and the NiAl-(Cr,Mo) eutectic systems. Intermetallics 3, 99–113 (1995).

    Article  CAS  Google Scholar 

  2. R.D. Noebe, R.R. Bowman, and M.V. Nathal: Physical and mechanical properties of the B2 compound NiAl. Int. Mater. Rev. 38, 193–232 (1993).

    Article  CAS  Google Scholar 

  3. D. Yu, H. Bei, Y. Chen, E.P. George, and K. An: Phase-specific deformation behavior of a relatively tough NiAl–Cr(Mo) lamellar composite. Scr. Mater. 84–85, 59–62 (2014).

    Article  Google Scholar 

  4. X.F. Chen, D.R. Johnson, R.D. Noebe, and B.F. Oliver: Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy. J. Mater. Res. 10, 1159–1170 (1995).

    Article  CAS  Google Scholar 

  5. A. Misra, R. Gibala, and R.D. Noebe: Optimization of toughness and strength in multiphase intermetallics. Intermetallics 9, 971–978 (2001).

    Article  CAS  Google Scholar 

  6. Z. Shang, J. Shen, L. Wang, Y.J. Du, Y.L. Xiong, and H.Z. Fu: Investigations on the microstructure and room temperature fracture toughness of directionally solidified NiAl-Cr(Mo) eutectic alloy. Intermetallics 57, 25–33 (2015).

    Article  CAS  Google Scholar 

  7. J.T. Guo, C.Y. Cui, Y.X. Chen, D.X. Li, and H.Q. Ye: Microstructure, interface and mechanical property of the DS NiAl/Cr(Mo,Hf) composite. Intermetallics 9, 287–297 (2001).

    Article  CAS  Google Scholar 

  8. C.Y. Cui, J.T. Guo, Y.H. Qi, and H.Q. Ye: High temperature embrittlement of NiAl alloy induced by hot isostatic pressing (HIPing) and aging. Scr. Mater. 44, 2437–2441 (2001).

    Article  CAS  Google Scholar 

  9. C.Y. Cui, J.T. Guo, Y.H. Qi, and H.Q. Ye: Deformation behavior and microstructure of DS NiAl/Cr(Mo) alloy containing Hf. Intermetallics 10, 1001–1009 (2002).

    Article  CAS  Google Scholar 

  10. L.Y. Sheng, L.J. Wang, T.F. Xi, Y.F. Zheng, and H.Q. Ye: Microstructure, precipitates and compressive properties of various holmium doped NiAl/Cr(Mo,Hf) eutectic alloys. Mater. Des. 32, 4810–4817 (2011).

    Article  CAS  Google Scholar 

  11. L.Y. Sheng, F. Yang, T.F. Xi, Y.F. Zheng, and J.T. Guo: Improvement of compressive strength and ductility in NiAl–Cr(Nb)/Dy alloy by rapid solidification and HIP treatment. Intermetallics 27, 14–20 (2012).

    Article  CAS  Google Scholar 

  12. L.Y. Sheng, W. Zhang, J.T. Guo, Z.S. Wang, and H.Q. Ye: Microstructure evolution and elevated temperature compressive properties of a rapidly solidified NiAl–Cr(Nb)/Dy alloy. Mater. Des. 30, 2752–2755 (2009).

    Article  CAS  Google Scholar 

  13. L. Wang, J. Shen, Z. Shang, J.F. Zhang, J.H. Chen, and H.Z. Fu: Effect of Dy on the microstructures of directionally solidified NiAl-Cr(Mo) hypereutectic alloy at different withdrawal rates. Intermetallics 44, 44–54 (2014).

    Article  CAS  Google Scholar 

  14. L. Wang, J. Shen, Z. Shang, and H.Z. Fu: Microstructure evolution and enhancement of fracture toughness of NiAl–Cr(Mo)–(Hf,Dy) alloy with a small addition of Fe during heat treatment. Scr. Mater. 89, 1–4 (2014).

    Article  CAS  Google Scholar 

  15. J.D. Hunt and K.A. Jackson: The dendrite-eutectic transition. Trans. Metall. Soc. AIME 239, 864–867 (1967).

    CAS  Google Scholar 

  16. S.V. Raj, I.E. Locci, J.A. Salem, and R.J. Pawlik: Effect of directionally solidified microstructures on the room-temperature fracture-toughness properties of Ni-33(at. pct)Al-33Cr-1Mo and Ni-33(at. pct)Al-31Cr-3Mo eutectic alloys grown at different solidification rates. Metall. Mater. Trans. A 33, 597–612 (2002).

    Article  Google Scholar 

  17. L. Wang and J. Shen: Effect of heat treatment on the microstructure and elevated temperature tensile property of Fe-doped NiAl-Cr(Mo)-(Hf,Dy) eutectic alloy. Mater. Sci. Eng., A 654, 177–183 (2016).

    Article  CAS  Google Scholar 

  18. L. Wang and J. Shen: Effect of withdrawal rate on the microstructure and room temperature mechanical properties of directionally solidified NiAl–Cr(Mo)–(Hf, Dy)–4Fe alloy. J. Alloys Compd. 663, 187–195 (2016).

    Article  CAS  Google Scholar 

  19. Y.C. Liang, J.T. Guo, Y. Xie, L.Y. Sheng, L.Z. Zhou, and Z.Q. Hu: Effect of growth rate on the tensile properties of DS NiAl/Cr(Mo) eutectic alloy produced by liquid metal cooling technique. Intermetallics 18, 319–323 (2010).

    Article  CAS  Google Scholar 

  20. D.M. Stefanescu: Science and Engineering of Casting Solidification, 2nd ed. (Springer, New York, 2009); p. 217.

    Google Scholar 

  21. G.X. Hu, X. Cai, and Y.H. Rong: Fundamentals of Materials Science, 2nd ed. (Shanghai Jiao Tong University Press, Shang Hai, 2006); p. 293.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is supported by the National Natural Science Foundation of China (No. 51501147), the doctoral starting fund of Xi’an University of Technology (101-451115004), the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201509) and National Natural Science Foundation of China (No. 51074128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Shen, J., Zhang, Y. et al. Microstructure and mechanical properties of NiAl-based hypereutectic alloy obtained by liquid metal cooling and zone melted liquid metal cooling directional solidification techniques. Journal of Materials Research 31, 646–654 (2016). https://doi.org/10.1557/jmr.2016.61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.61

Navigation